纳米材料抗击 SARS-CoV-2 和 Mucormycosis 合并感染的潜在活性。

IF 4.2 2区 医学 Q1 INFECTIOUS DISEASES Expert Review of Anti-infective Therapy Pub Date : 2024-10-30 DOI:10.1080/14787210.2024.2423359
Chinmaya Mahapatra, Sakshi Jadhav, Prasoon Kumar, Dijendra Nath Roy, Awanish Kumar, Manash K Paul
{"title":"纳米材料抗击 SARS-CoV-2 和 Mucormycosis 合并感染的潜在活性。","authors":"Chinmaya Mahapatra, Sakshi Jadhav, Prasoon Kumar, Dijendra Nath Roy, Awanish Kumar, Manash K Paul","doi":"10.1080/14787210.2024.2423359","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mucormycosis, popularly known as the black fungus, has become a worldwide concern in the continuing COVID-19 pandemic, causing increased morbidity and death in immunocompromised people. Due to multi-drug resistance and the limited number of antifungals, surgical interventions, ‎including the excision of infected tissue, remain a standard treatment option‎. Surgical treatment usually results in the loss of organs or their function, long-term intensive care, and a significant risk of reinfection during the procedure. A comprehensive approach is needed to treat the disease, and nanomaterials can be a powerful alternative therapeutic approach.</p><p><strong>Areas covered: </strong>We searched PubMed, Scopus, and Google Scholar with the keywords 'emerging role of nanomaterials,' and 'combating COVID-19-related mucormycosis,' and reviewed the related research paper. Antifungal nanomaterials and their delivery can significantly impact the treatment of COVID-19-related fungal infections like mucormycosis. However, the therapeutic options for mucormycosis are limited and drug resistance is also reported.</p><p><strong>Expert opinion: </strong>The current review encompasses a detailed overview of the recent developments in antifungal/antiviral nanomaterials and the properties of these therapeutic nanomaterials that may contribute to formulating an efficient strategy against invasive mucormycosis. Further extensive research is needed to develop nano-based therapeutics for the management of mucormycosis-viral coinfection with a definitive end-point.</p>","PeriodicalId":12213,"journal":{"name":"Expert Review of Anti-infective Therapy","volume":" ","pages":"1-13"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential activity of nanomaterials to combat SARS-CoV-2 and mucormycosis ‎coinfection‎.\",\"authors\":\"Chinmaya Mahapatra, Sakshi Jadhav, Prasoon Kumar, Dijendra Nath Roy, Awanish Kumar, Manash K Paul\",\"doi\":\"10.1080/14787210.2024.2423359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Mucormycosis, popularly known as the black fungus, has become a worldwide concern in the continuing COVID-19 pandemic, causing increased morbidity and death in immunocompromised people. Due to multi-drug resistance and the limited number of antifungals, surgical interventions, ‎including the excision of infected tissue, remain a standard treatment option‎. Surgical treatment usually results in the loss of organs or their function, long-term intensive care, and a significant risk of reinfection during the procedure. A comprehensive approach is needed to treat the disease, and nanomaterials can be a powerful alternative therapeutic approach.</p><p><strong>Areas covered: </strong>We searched PubMed, Scopus, and Google Scholar with the keywords 'emerging role of nanomaterials,' and 'combating COVID-19-related mucormycosis,' and reviewed the related research paper. Antifungal nanomaterials and their delivery can significantly impact the treatment of COVID-19-related fungal infections like mucormycosis. However, the therapeutic options for mucormycosis are limited and drug resistance is also reported.</p><p><strong>Expert opinion: </strong>The current review encompasses a detailed overview of the recent developments in antifungal/antiviral nanomaterials and the properties of these therapeutic nanomaterials that may contribute to formulating an efficient strategy against invasive mucormycosis. Further extensive research is needed to develop nano-based therapeutics for the management of mucormycosis-viral coinfection with a definitive end-point.</p>\",\"PeriodicalId\":12213,\"journal\":{\"name\":\"Expert Review of Anti-infective Therapy\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Anti-infective Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14787210.2024.2423359\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Anti-infective Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14787210.2024.2423359","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

导言:粘孢子菌病俗称黑木耳,在 COVID-19 持续大流行的情况下已成为全球关注的问题,导致免疫力低下人群的发病率和死亡率上升。由于多重耐药性和抗真菌药物数量有限,外科干预(包括切除受感染的组织)仍然是标准的治疗方案。手术治疗通常会导致器官或其功能的丧失、长期的重症监护以及手术过程中再次感染的巨大风险。我们需要一种综合方法来治疗这种疾病,而纳米材料可以成为一种强有力的替代治疗方法:我们以 "纳米材料的新作用 "和 "抗击 COVID-19 相关粘孢子菌病 "为关键词在 PubMed、Scopus 和 Google Scholar 上进行了搜索,并查阅了相关研究论文。抗真菌纳米材料及其递送可对治疗与 COVID-19 相关的真菌感染(如粘孢子菌病)产生重大影响。然而,粘孢子菌病的治疗方案有限,而且还有耐药性的报道:本综述详细概述了抗真菌/抗病毒纳米材料的最新发展以及这些治疗性纳米材料的特性,这些特性可能有助于制定针对侵袭性粘孢子菌病的有效策略。需要进一步开展广泛的研究,以开发用于治疗粘孢子菌病-病毒双重感染的纳米疗法,并确定最终治疗目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential activity of nanomaterials to combat SARS-CoV-2 and mucormycosis ‎coinfection‎.

Introduction: Mucormycosis, popularly known as the black fungus, has become a worldwide concern in the continuing COVID-19 pandemic, causing increased morbidity and death in immunocompromised people. Due to multi-drug resistance and the limited number of antifungals, surgical interventions, ‎including the excision of infected tissue, remain a standard treatment option‎. Surgical treatment usually results in the loss of organs or their function, long-term intensive care, and a significant risk of reinfection during the procedure. A comprehensive approach is needed to treat the disease, and nanomaterials can be a powerful alternative therapeutic approach.

Areas covered: We searched PubMed, Scopus, and Google Scholar with the keywords 'emerging role of nanomaterials,' and 'combating COVID-19-related mucormycosis,' and reviewed the related research paper. Antifungal nanomaterials and their delivery can significantly impact the treatment of COVID-19-related fungal infections like mucormycosis. However, the therapeutic options for mucormycosis are limited and drug resistance is also reported.

Expert opinion: The current review encompasses a detailed overview of the recent developments in antifungal/antiviral nanomaterials and the properties of these therapeutic nanomaterials that may contribute to formulating an efficient strategy against invasive mucormycosis. Further extensive research is needed to develop nano-based therapeutics for the management of mucormycosis-viral coinfection with a definitive end-point.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
66
审稿时长
4-8 weeks
期刊介绍: Expert Review of Anti-Infective Therapy (ISSN 1478-7210) provides expert reviews on therapeutics and diagnostics in the treatment of infectious disease. Coverage includes antibiotics, drug resistance, drug therapy, infectious disease medicine, antibacterial, antimicrobial, antifungal and antiviral approaches, and diagnostic tests.
期刊最新文献
Could the next "disease X" be a pandemic of virus-induced encephalitis? What should our first medical response be? The opportunities and challenges of epigenetic approaches to manage herpes simplex infections. Potential activity of nanomaterials to combat SARS-CoV-2 and mucormycosis ‎coinfection‎. Clinical effectiveness of oral antivirals for non-hospitalized adult COVID-19 patients aged 18-60 years. Is self-medication with antibiotics among the public a global concern: a mixed-methods systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1