Artur Gurgul, Jakub Żurowski, Tomasz Szmatoła, Mirosław Kucharski, Sebastian Sawicki, Ewelina Semik-Gurgul, Ewa Ocłoń
{"title":"大麻二酚(CBD)可调节暴露于乙醇的人类真皮成纤维细胞的转录谱。","authors":"Artur Gurgul, Jakub Żurowski, Tomasz Szmatoła, Mirosław Kucharski, Sebastian Sawicki, Ewelina Semik-Gurgul, Ewa Ocłoń","doi":"10.1007/s13353-024-00915-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cannabidiol (CBD) is abundant in the Cannabis sativa plant and exhibits complex immunomodulatory, anxiolytic, antioxidant, and antiepileptic properties. Several studies suggest that CBD could be used for different purposes in alcohol use disorder (AUD) and alcohol-related injuries to the brain and the liver. In this study, we focused on analyzing transcriptional alterations in human dermal fibroblasts (HDFs) cell line challenged simultaneously with ethanol and CBD as an ethanol-protective agent. We aimed to expose the genes and pathways responsible for at least some of the CBD effects in those cells that can be related to the AUD. Transcriptome analysis was performed using HDFs cell line that expresses both cannabinoid receptors and can metabolize ethanol through alcohol dehydrogenase activity. Fibroblasts are also responsible for the progression of liver fibrosis, a common comorbidity in AUD. With the use of a cellular test, we found that CBD at the lowest applied concentration (0.75 μM) was able to stimulate depressed metabolism and reduce the level of apoptosis of cells treated with different concentrations of ethanol to the level observed in the control cells. Similar observations were made at the transcriptome level, in which cells treated with ethanol and CBD had similar expression profiles to the control cells. CBD also affects several genes connected with extracellular matrix formation (especially its collagen constituent), which can have potential implications for, e.g., fibrosis process.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561130/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cannabidiol (CBD) modulates the transcriptional profile of ethanol-exposed human dermal fibroblast cells.\",\"authors\":\"Artur Gurgul, Jakub Żurowski, Tomasz Szmatoła, Mirosław Kucharski, Sebastian Sawicki, Ewelina Semik-Gurgul, Ewa Ocłoń\",\"doi\":\"10.1007/s13353-024-00915-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cannabidiol (CBD) is abundant in the Cannabis sativa plant and exhibits complex immunomodulatory, anxiolytic, antioxidant, and antiepileptic properties. Several studies suggest that CBD could be used for different purposes in alcohol use disorder (AUD) and alcohol-related injuries to the brain and the liver. In this study, we focused on analyzing transcriptional alterations in human dermal fibroblasts (HDFs) cell line challenged simultaneously with ethanol and CBD as an ethanol-protective agent. We aimed to expose the genes and pathways responsible for at least some of the CBD effects in those cells that can be related to the AUD. Transcriptome analysis was performed using HDFs cell line that expresses both cannabinoid receptors and can metabolize ethanol through alcohol dehydrogenase activity. Fibroblasts are also responsible for the progression of liver fibrosis, a common comorbidity in AUD. With the use of a cellular test, we found that CBD at the lowest applied concentration (0.75 μM) was able to stimulate depressed metabolism and reduce the level of apoptosis of cells treated with different concentrations of ethanol to the level observed in the control cells. Similar observations were made at the transcriptome level, in which cells treated with ethanol and CBD had similar expression profiles to the control cells. CBD also affects several genes connected with extracellular matrix formation (especially its collagen constituent), which can have potential implications for, e.g., fibrosis process.</p>\",\"PeriodicalId\":14891,\"journal\":{\"name\":\"Journal of Applied Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561130/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13353-024-00915-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13353-024-00915-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Cannabidiol (CBD) modulates the transcriptional profile of ethanol-exposed human dermal fibroblast cells.
Cannabidiol (CBD) is abundant in the Cannabis sativa plant and exhibits complex immunomodulatory, anxiolytic, antioxidant, and antiepileptic properties. Several studies suggest that CBD could be used for different purposes in alcohol use disorder (AUD) and alcohol-related injuries to the brain and the liver. In this study, we focused on analyzing transcriptional alterations in human dermal fibroblasts (HDFs) cell line challenged simultaneously with ethanol and CBD as an ethanol-protective agent. We aimed to expose the genes and pathways responsible for at least some of the CBD effects in those cells that can be related to the AUD. Transcriptome analysis was performed using HDFs cell line that expresses both cannabinoid receptors and can metabolize ethanol through alcohol dehydrogenase activity. Fibroblasts are also responsible for the progression of liver fibrosis, a common comorbidity in AUD. With the use of a cellular test, we found that CBD at the lowest applied concentration (0.75 μM) was able to stimulate depressed metabolism and reduce the level of apoptosis of cells treated with different concentrations of ethanol to the level observed in the control cells. Similar observations were made at the transcriptome level, in which cells treated with ethanol and CBD had similar expression profiles to the control cells. CBD also affects several genes connected with extracellular matrix formation (especially its collagen constituent), which can have potential implications for, e.g., fibrosis process.
期刊介绍:
The Journal of Applied Genetics is an international journal on genetics and genomics. It publishes peer-reviewed original papers, short communications (including case reports) and review articles focused on the research of applicative aspects of plant, human, animal and microbial genetics and genomics.