大麻二酚(CBD)可调节暴露于乙醇的人类真皮成纤维细胞的转录谱。

IF 2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Applied Genetics Pub Date : 2024-12-01 Epub Date: 2024-10-28 DOI:10.1007/s13353-024-00915-7
Artur Gurgul, Jakub Żurowski, Tomasz Szmatoła, Mirosław Kucharski, Sebastian Sawicki, Ewelina Semik-Gurgul, Ewa Ocłoń
{"title":"大麻二酚(CBD)可调节暴露于乙醇的人类真皮成纤维细胞的转录谱。","authors":"Artur Gurgul, Jakub Żurowski, Tomasz Szmatoła, Mirosław Kucharski, Sebastian Sawicki, Ewelina Semik-Gurgul, Ewa Ocłoń","doi":"10.1007/s13353-024-00915-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cannabidiol (CBD) is abundant in the Cannabis sativa plant and exhibits complex immunomodulatory, anxiolytic, antioxidant, and antiepileptic properties. Several studies suggest that CBD could be used for different purposes in alcohol use disorder (AUD) and alcohol-related injuries to the brain and the liver. In this study, we focused on analyzing transcriptional alterations in human dermal fibroblasts (HDFs) cell line challenged simultaneously with ethanol and CBD as an ethanol-protective agent. We aimed to expose the genes and pathways responsible for at least some of the CBD effects in those cells that can be related to the AUD. Transcriptome analysis was performed using HDFs cell line that expresses both cannabinoid receptors and can metabolize ethanol through alcohol dehydrogenase activity. Fibroblasts are also responsible for the progression of liver fibrosis, a common comorbidity in AUD. With the use of a cellular test, we found that CBD at the lowest applied concentration (0.75 μM) was able to stimulate depressed metabolism and reduce the level of apoptosis of cells treated with different concentrations of ethanol to the level observed in the control cells. Similar observations were made at the transcriptome level, in which cells treated with ethanol and CBD had similar expression profiles to the control cells. CBD also affects several genes connected with extracellular matrix formation (especially its collagen constituent), which can have potential implications for, e.g., fibrosis process.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561130/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cannabidiol (CBD) modulates the transcriptional profile of ethanol-exposed human dermal fibroblast cells.\",\"authors\":\"Artur Gurgul, Jakub Żurowski, Tomasz Szmatoła, Mirosław Kucharski, Sebastian Sawicki, Ewelina Semik-Gurgul, Ewa Ocłoń\",\"doi\":\"10.1007/s13353-024-00915-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cannabidiol (CBD) is abundant in the Cannabis sativa plant and exhibits complex immunomodulatory, anxiolytic, antioxidant, and antiepileptic properties. Several studies suggest that CBD could be used for different purposes in alcohol use disorder (AUD) and alcohol-related injuries to the brain and the liver. In this study, we focused on analyzing transcriptional alterations in human dermal fibroblasts (HDFs) cell line challenged simultaneously with ethanol and CBD as an ethanol-protective agent. We aimed to expose the genes and pathways responsible for at least some of the CBD effects in those cells that can be related to the AUD. Transcriptome analysis was performed using HDFs cell line that expresses both cannabinoid receptors and can metabolize ethanol through alcohol dehydrogenase activity. Fibroblasts are also responsible for the progression of liver fibrosis, a common comorbidity in AUD. With the use of a cellular test, we found that CBD at the lowest applied concentration (0.75 μM) was able to stimulate depressed metabolism and reduce the level of apoptosis of cells treated with different concentrations of ethanol to the level observed in the control cells. Similar observations were made at the transcriptome level, in which cells treated with ethanol and CBD had similar expression profiles to the control cells. CBD also affects several genes connected with extracellular matrix formation (especially its collagen constituent), which can have potential implications for, e.g., fibrosis process.</p>\",\"PeriodicalId\":14891,\"journal\":{\"name\":\"Journal of Applied Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561130/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13353-024-00915-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13353-024-00915-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大麻二酚(CBD)在大麻植物中含量丰富,具有复杂的免疫调节、抗焦虑、抗氧化和抗癫痫特性。多项研究表明,CBD 可用于治疗酒精使用障碍(AUD)以及与酒精相关的大脑和肝脏损伤。在本研究中,我们重点分析了同时受到乙醇和作为乙醇保护剂的 CBD 挑战的人真皮成纤维细胞(HDFs)细胞系的转录变化。我们的目的是揭示在这些细胞中至少有哪些基因和通路负责CBD的影响,这些基因和通路可能与AUD有关。我们使用 HDFs 细胞系进行了转录组分析,该细胞系同时表达大麻素受体,并能通过乙醇脱氢酶活性代谢乙醇。成纤维细胞也是造成肝纤维化进展的原因,而肝纤维化是 AUD 的常见合并症。通过使用细胞测试,我们发现最低应用浓度(0.75 μM)的 CBD 能够刺激抑制代谢,并将使用不同浓度乙醇处理的细胞的凋亡水平降低到对照细胞中观察到的水平。在转录组水平上也有类似的观察结果,用乙醇和 CBD 处理过的细胞与对照细胞有相似的表达谱。CBD 还会影响与细胞外基质(尤其是其胶原成分)形成有关的几个基因,这可能会对纤维化过程等产生潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cannabidiol (CBD) modulates the transcriptional profile of ethanol-exposed human dermal fibroblast cells.

Cannabidiol (CBD) is abundant in the Cannabis sativa plant and exhibits complex immunomodulatory, anxiolytic, antioxidant, and antiepileptic properties. Several studies suggest that CBD could be used for different purposes in alcohol use disorder (AUD) and alcohol-related injuries to the brain and the liver. In this study, we focused on analyzing transcriptional alterations in human dermal fibroblasts (HDFs) cell line challenged simultaneously with ethanol and CBD as an ethanol-protective agent. We aimed to expose the genes and pathways responsible for at least some of the CBD effects in those cells that can be related to the AUD. Transcriptome analysis was performed using HDFs cell line that expresses both cannabinoid receptors and can metabolize ethanol through alcohol dehydrogenase activity. Fibroblasts are also responsible for the progression of liver fibrosis, a common comorbidity in AUD. With the use of a cellular test, we found that CBD at the lowest applied concentration (0.75 μM) was able to stimulate depressed metabolism and reduce the level of apoptosis of cells treated with different concentrations of ethanol to the level observed in the control cells. Similar observations were made at the transcriptome level, in which cells treated with ethanol and CBD had similar expression profiles to the control cells. CBD also affects several genes connected with extracellular matrix formation (especially its collagen constituent), which can have potential implications for, e.g., fibrosis process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Genetics
Journal of Applied Genetics 生物-生物工程与应用微生物
CiteScore
4.30
自引率
4.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: The Journal of Applied Genetics is an international journal on genetics and genomics. It publishes peer-reviewed original papers, short communications (including case reports) and review articles focused on the research of applicative aspects of plant, human, animal and microbial genetics and genomics.
期刊最新文献
Correction to: Diallel analysis of common bean (Phaseolus vulgaris L.) genotypes for seed dietary fibre, carbohydrate, calcium and phosphorus contents. Retraction Note: A new DNA sequence entropy-based Kullback-Leibler algorithm for gene clustering. Peptidylprolyl isomerase D circular RNA sensitizes breast cancer to trastuzumab through remodeling HER2 N4-acetylcytidine modification. The role of multidisciplinary diagnostic and therapeutic model of care in Lamb-Shaffer syndrome - case report. Uncovering the role of aquaporin and chromobox family members as potential biomarkers in head and neck squamous cell carcinoma via integrative multiomics and in silico approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1