{"title":"[基于 SSR 分子标记的 Elaeagnus angustifolia 遗传多样性和指纹图谱]。","authors":"Zixu Wang, Zhihan Zeng, Xiaotian Qin, Zihang Li, Yuhang Tong, Kelin Liu, Qingwei Li","doi":"10.13345/j.cjb.240284","DOIUrl":null,"url":null,"abstract":"<p><p>DNA fingerprinting can reveal the genetic diversity of <i>Elaeagnus angustifolia</i> germplasm resources and clarify the source and genetic background of <i>E</i>. <i>angustifolia</i> germplasm, which are the preconditions for the breeding of new varieties, the identification and protection of germplasm resources, and the comprehensive development of the <i>E</i>. <i>angustifolia</i> industry considering both ecological and economic benefits. We employed 11 pairs of primers with high polymorphism, clear bands, and high reproducibility to analyze the genetic diversity of 150 <i>E</i>. <i>angustifolia</i> germplasm accessions from Gansu and Beijing by the simple sequence repeat (SSR) molecular markers. We then employed the unweighted pair-group method with arithmetic means (UPGMA) to perform the cluster analysis based on genetic distance and analyzed the genetic structure of the 150 germplasm accessions based on a Bayesian model in Structure v2.3.3. The genetic diversity analysis revealed the mean number of alleles (<i>Na</i>) of 7.636 4, the mean number of effective alleles (<i>Ne</i>) of 2.832 6, the mean Shannon genetic diversity index (<i>I</i>) of 1.178 1, the mean Nei's gene diversity index (<i>H</i>) of 0.582 1, the mean observed heterozygosity (<i>Ho</i>) of 0.489 9, the mean expected heterozygosity (<i>He</i>) of 0.584 0, the mean polymorphism information content (<i>PIC</i>) of 0.535 4, and the mean genetic similarity (<i>GS</i>) of 0.831 5. These results suggested that the <i>E</i>. <i>angustifolia</i> germplasm resources we studied exhibited significant genetic differences and rich genetic diversity. The cluster analysis revealed that the tested materials can be classified into 3 groups, with the main genetic distance (<i>GD</i>) of 0.422 9. The clustering results were not completely consistent with the geographic origin. The population structure analysis classified the germplasm accessions into 2 populations. We used 8 pairs of primers with high PIC to construct the fingerprints of 150 <i>E</i>. <i>angustifolia</i> germplasm accessions. The present study successfully constructs the DNA fingerprints and clarified the genetic relationship of the <i>E</i>. <i>angustifolia</i> germplasm resources in Gansu and Beijing, providing a theoretical basis for germplasm resource identification, breeding of elite varieties, application in gardening, and molecular-assisted breeding of <i>E</i>. <i>angustifolia</i>.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 10","pages":"3530-3547"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Genetic diversity and fingerprinting of <i>Elaeagnus angustifolia</i> based on SSR molecular markers].\",\"authors\":\"Zixu Wang, Zhihan Zeng, Xiaotian Qin, Zihang Li, Yuhang Tong, Kelin Liu, Qingwei Li\",\"doi\":\"10.13345/j.cjb.240284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA fingerprinting can reveal the genetic diversity of <i>Elaeagnus angustifolia</i> germplasm resources and clarify the source and genetic background of <i>E</i>. <i>angustifolia</i> germplasm, which are the preconditions for the breeding of new varieties, the identification and protection of germplasm resources, and the comprehensive development of the <i>E</i>. <i>angustifolia</i> industry considering both ecological and economic benefits. We employed 11 pairs of primers with high polymorphism, clear bands, and high reproducibility to analyze the genetic diversity of 150 <i>E</i>. <i>angustifolia</i> germplasm accessions from Gansu and Beijing by the simple sequence repeat (SSR) molecular markers. We then employed the unweighted pair-group method with arithmetic means (UPGMA) to perform the cluster analysis based on genetic distance and analyzed the genetic structure of the 150 germplasm accessions based on a Bayesian model in Structure v2.3.3. The genetic diversity analysis revealed the mean number of alleles (<i>Na</i>) of 7.636 4, the mean number of effective alleles (<i>Ne</i>) of 2.832 6, the mean Shannon genetic diversity index (<i>I</i>) of 1.178 1, the mean Nei's gene diversity index (<i>H</i>) of 0.582 1, the mean observed heterozygosity (<i>Ho</i>) of 0.489 9, the mean expected heterozygosity (<i>He</i>) of 0.584 0, the mean polymorphism information content (<i>PIC</i>) of 0.535 4, and the mean genetic similarity (<i>GS</i>) of 0.831 5. These results suggested that the <i>E</i>. <i>angustifolia</i> germplasm resources we studied exhibited significant genetic differences and rich genetic diversity. The cluster analysis revealed that the tested materials can be classified into 3 groups, with the main genetic distance (<i>GD</i>) of 0.422 9. The clustering results were not completely consistent with the geographic origin. The population structure analysis classified the germplasm accessions into 2 populations. We used 8 pairs of primers with high PIC to construct the fingerprints of 150 <i>E</i>. <i>angustifolia</i> germplasm accessions. The present study successfully constructs the DNA fingerprints and clarified the genetic relationship of the <i>E</i>. <i>angustifolia</i> germplasm resources in Gansu and Beijing, providing a theoretical basis for germplasm resource identification, breeding of elite varieties, application in gardening, and molecular-assisted breeding of <i>E</i>. <i>angustifolia</i>.</p>\",\"PeriodicalId\":21778,\"journal\":{\"name\":\"Sheng wu gong cheng xue bao = Chinese journal of biotechnology\",\"volume\":\"40 10\",\"pages\":\"3530-3547\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sheng wu gong cheng xue bao = Chinese journal of biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13345/j.cjb.240284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
[Genetic diversity and fingerprinting of Elaeagnus angustifolia based on SSR molecular markers].
DNA fingerprinting can reveal the genetic diversity of Elaeagnus angustifolia germplasm resources and clarify the source and genetic background of E. angustifolia germplasm, which are the preconditions for the breeding of new varieties, the identification and protection of germplasm resources, and the comprehensive development of the E. angustifolia industry considering both ecological and economic benefits. We employed 11 pairs of primers with high polymorphism, clear bands, and high reproducibility to analyze the genetic diversity of 150 E. angustifolia germplasm accessions from Gansu and Beijing by the simple sequence repeat (SSR) molecular markers. We then employed the unweighted pair-group method with arithmetic means (UPGMA) to perform the cluster analysis based on genetic distance and analyzed the genetic structure of the 150 germplasm accessions based on a Bayesian model in Structure v2.3.3. The genetic diversity analysis revealed the mean number of alleles (Na) of 7.636 4, the mean number of effective alleles (Ne) of 2.832 6, the mean Shannon genetic diversity index (I) of 1.178 1, the mean Nei's gene diversity index (H) of 0.582 1, the mean observed heterozygosity (Ho) of 0.489 9, the mean expected heterozygosity (He) of 0.584 0, the mean polymorphism information content (PIC) of 0.535 4, and the mean genetic similarity (GS) of 0.831 5. These results suggested that the E. angustifolia germplasm resources we studied exhibited significant genetic differences and rich genetic diversity. The cluster analysis revealed that the tested materials can be classified into 3 groups, with the main genetic distance (GD) of 0.422 9. The clustering results were not completely consistent with the geographic origin. The population structure analysis classified the germplasm accessions into 2 populations. We used 8 pairs of primers with high PIC to construct the fingerprints of 150 E. angustifolia germplasm accessions. The present study successfully constructs the DNA fingerprints and clarified the genetic relationship of the E. angustifolia germplasm resources in Gansu and Beijing, providing a theoretical basis for germplasm resource identification, breeding of elite varieties, application in gardening, and molecular-assisted breeding of E. angustifolia.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.