磺化低分子量聚乙烯醇的基因转染能力增强及其在抗肿瘤治疗中的应用

Xiao-Li Tian, Ping Chen, Yue Hu, Lan Zhang, Xiao-Qi Yu, Ji Zhang
{"title":"磺化低分子量聚乙烯醇的基因转染能力增强及其在抗肿瘤治疗中的应用","authors":"Xiao-Li Tian, Ping Chen, Yue Hu, Lan Zhang, Xiao-Qi Yu, Ji Zhang","doi":"10.1039/d4tb01760a","DOIUrl":null,"url":null,"abstract":"<p><p>With the continuous progress of nanotechnology in the field of tumor vaccines, immunotherapy has been regarded as one of the most powerful approaches for cancer treatment. Currently, DNA vaccines are used to efficiently deliver plasmids encoding tumor-associated antigens to antigen-presenting cells (APCs) and enhance the activation of immune cells. In this work, a series of aromatic sulfonyl small-molecule-modified polymers R-P based on low-molecular-weight polyethylenimine (PEI) were prepared, and their structure-activity relationship was studied. Among them, Ns-P with high transfection efficiency and low toxicity was applied to deliver antigen ovalbumin (OVA)-encoded plasmid DNA to APCs for triggering the immune activation of dendritic cells (DCs). It was also found that Ns-P could be used as an immune adjuvant to activate the STING pathway in DCs, integrating innate stimulating activity into the carrier to enhance antitumor immunity. Moreover, the modification of Ns-P/pOVA complexes with oxidized mannan could not only improve the biocompatibility of the complex, but also enhance the uptake of DCs, further inducing OVA antigen presentation and immune stimulation. <i>In vivo</i> antitumor assays indicated that Ns-P/pOVA/Man immunization could inhibit the growth of OVA-expressing E.G7 tumors in C57BL/6 mice. These results demonstrated that Ns-P/pOVA/Man is promising for gene delivery and immunotherapy application.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced gene transfection ability of sulfonylated low-molecular-weight PEI and its application in anti-tumor treatment.\",\"authors\":\"Xiao-Li Tian, Ping Chen, Yue Hu, Lan Zhang, Xiao-Qi Yu, Ji Zhang\",\"doi\":\"10.1039/d4tb01760a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the continuous progress of nanotechnology in the field of tumor vaccines, immunotherapy has been regarded as one of the most powerful approaches for cancer treatment. Currently, DNA vaccines are used to efficiently deliver plasmids encoding tumor-associated antigens to antigen-presenting cells (APCs) and enhance the activation of immune cells. In this work, a series of aromatic sulfonyl small-molecule-modified polymers R-P based on low-molecular-weight polyethylenimine (PEI) were prepared, and their structure-activity relationship was studied. Among them, Ns-P with high transfection efficiency and low toxicity was applied to deliver antigen ovalbumin (OVA)-encoded plasmid DNA to APCs for triggering the immune activation of dendritic cells (DCs). It was also found that Ns-P could be used as an immune adjuvant to activate the STING pathway in DCs, integrating innate stimulating activity into the carrier to enhance antitumor immunity. Moreover, the modification of Ns-P/pOVA complexes with oxidized mannan could not only improve the biocompatibility of the complex, but also enhance the uptake of DCs, further inducing OVA antigen presentation and immune stimulation. <i>In vivo</i> antitumor assays indicated that Ns-P/pOVA/Man immunization could inhibit the growth of OVA-expressing E.G7 tumors in C57BL/6 mice. These results demonstrated that Ns-P/pOVA/Man is promising for gene delivery and immunotherapy application.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d4tb01760a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb01760a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着纳米技术在肿瘤疫苗领域的不断进步,免疫疗法已被视为治疗癌症最有力的方法之一。目前,DNA 疫苗被用来将编码肿瘤相关抗原的质粒有效地传递给抗原递呈细胞(APCs),并增强免疫细胞的活化。本研究制备了一系列基于低分子量聚乙烯亚胺(PEI)的芳香磺酰小分子修饰聚合物 R-P,并研究了它们的结构-活性关系。其中,Ns-P具有转染效率高、毒性低的特点,可用于将抗原卵清蛋白(OVA)编码的质粒DNA传递给APC,从而触发树突状细胞(DCs)的免疫活化。研究还发现,Ns-P 可用作免疫佐剂,激活 DCs 中的 STING 通路,将先天性刺激活性融入载体,从而增强抗肿瘤免疫。此外,用氧化甘露聚糖修饰Ns-P/pOVA复合物不仅能提高复合物的生物相容性,还能增强DC的吸收,进一步诱导OVA抗原呈递和免疫刺激。体内抗肿瘤试验表明,Ns-P/pOVA/Man 免疫接种可抑制 C57BL/6 小鼠体内表达 OVA 的 E.G7 肿瘤的生长。这些结果表明,Ns-P/pOVA/Man 在基因递送和免疫治疗方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced gene transfection ability of sulfonylated low-molecular-weight PEI and its application in anti-tumor treatment.

With the continuous progress of nanotechnology in the field of tumor vaccines, immunotherapy has been regarded as one of the most powerful approaches for cancer treatment. Currently, DNA vaccines are used to efficiently deliver plasmids encoding tumor-associated antigens to antigen-presenting cells (APCs) and enhance the activation of immune cells. In this work, a series of aromatic sulfonyl small-molecule-modified polymers R-P based on low-molecular-weight polyethylenimine (PEI) were prepared, and their structure-activity relationship was studied. Among them, Ns-P with high transfection efficiency and low toxicity was applied to deliver antigen ovalbumin (OVA)-encoded plasmid DNA to APCs for triggering the immune activation of dendritic cells (DCs). It was also found that Ns-P could be used as an immune adjuvant to activate the STING pathway in DCs, integrating innate stimulating activity into the carrier to enhance antitumor immunity. Moreover, the modification of Ns-P/pOVA complexes with oxidized mannan could not only improve the biocompatibility of the complex, but also enhance the uptake of DCs, further inducing OVA antigen presentation and immune stimulation. In vivo antitumor assays indicated that Ns-P/pOVA/Man immunization could inhibit the growth of OVA-expressing E.G7 tumors in C57BL/6 mice. These results demonstrated that Ns-P/pOVA/Man is promising for gene delivery and immunotherapy application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Development of a xanthene-based NIR fluorescent probe for accurate and sensitive detection of γ-glutamyl transpeptidase in cancer diagnosis and treatment. Biomaterials enhancing localized cancer therapy activated anti-tumor immunity: a review. Quantum DFT analysis and molecular docking investigation of various potential breast cancer drugs. Machine learning-assisted pattern recognition and imaging of multiplexed cancer cells via a porphyrin-embedded dendrimer array. Enhanced luminescence and stability of TFMDSA nanoparticles via polymer-induced aggregation for bioimaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1