用于高灵敏度射电望远镜的射频干扰感知和低成本最大似然成像技术

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-10-17 DOI:10.1109/LSP.2024.3483011
J. Wang;M. N. El Korso;L. Bacharach;P. Larzabal
{"title":"用于高灵敏度射电望远镜的射频干扰感知和低成本最大似然成像技术","authors":"J. Wang;M. N. El Korso;L. Bacharach;P. Larzabal","doi":"10.1109/LSP.2024.3483011","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenge of interference mitigation and reduction of computational cost in the context of radio interferometric imaging. We propose a novel maximum-likelihood-based methodology based on the antenna sub-array switching technique, which strikes a refined balance between imaging accuracy and computational efficiency. In addition, we tackle robustness regarding radio interference by modeling the additive noise as t-distributed. Through simulation results, we demonstrate the superiority of the t-distributed noise model over the conventional Gaussian noise model in scenarios involving interferences. We evidence that our proposed switching approach yields similar imaging performances with far fewer visibilities compared to the full array configuration, thus, diminishing the computational complexity.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RFI-Aware and Low-Cost Maximum Likelihood Imaging for High-Sensitivity Radio Telescopes\",\"authors\":\"J. Wang;M. N. El Korso;L. Bacharach;P. Larzabal\",\"doi\":\"10.1109/LSP.2024.3483011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the challenge of interference mitigation and reduction of computational cost in the context of radio interferometric imaging. We propose a novel maximum-likelihood-based methodology based on the antenna sub-array switching technique, which strikes a refined balance between imaging accuracy and computational efficiency. In addition, we tackle robustness regarding radio interference by modeling the additive noise as t-distributed. Through simulation results, we demonstrate the superiority of the t-distributed noise model over the conventional Gaussian noise model in scenarios involving interferences. We evidence that our proposed switching approach yields similar imaging performances with far fewer visibilities compared to the full array configuration, thus, diminishing the computational complexity.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720883/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10720883/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在解决无线电干涉成像中的干扰缓解和计算成本降低问题。我们基于天线子阵列切换技术,提出了一种基于最大似然法的新方法,在成像精度和计算效率之间取得了完美的平衡。此外,我们将加性噪声建模为 t 分布,从而解决了无线电干扰的鲁棒性问题。通过模拟结果,我们证明了在涉及干扰的情况下,t 分布噪声模型优于传统的高斯噪声模型。我们证明,与全阵列配置相比,我们提出的切换方法以更少的可见度获得了类似的成像性能,从而降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RFI-Aware and Low-Cost Maximum Likelihood Imaging for High-Sensitivity Radio Telescopes
This paper addresses the challenge of interference mitigation and reduction of computational cost in the context of radio interferometric imaging. We propose a novel maximum-likelihood-based methodology based on the antenna sub-array switching technique, which strikes a refined balance between imaging accuracy and computational efficiency. In addition, we tackle robustness regarding radio interference by modeling the additive noise as t-distributed. Through simulation results, we demonstrate the superiority of the t-distributed noise model over the conventional Gaussian noise model in scenarios involving interferences. We evidence that our proposed switching approach yields similar imaging performances with far fewer visibilities compared to the full array configuration, thus, diminishing the computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
KFA: Keyword Feature Augmentation for Open Set Keyword Spotting RFI-Aware and Low-Cost Maximum Likelihood Imaging for High-Sensitivity Radio Telescopes Audio Mamba: Bidirectional State Space Model for Audio Representation Learning System-Informed Neural Network for Frequency Detection Order Estimation of Linear-Phase FIR Filters for DAC Equalization in Multiple Nyquist Bands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1