Haitao Zhao;Chunxi Zhao;Tianyu Zhang;Bo Xu;Jinlong Sun
{"title":"渔网优化:优化空地车辆网络中多测站的学习方案","authors":"Haitao Zhao;Chunxi Zhao;Tianyu Zhang;Bo Xu;Jinlong Sun","doi":"10.1109/LSP.2024.3479923","DOIUrl":null,"url":null,"abstract":"Integrated sensing and communication in 6G, particularly for air-ground surveillance using automatic dependent surveillance-broadcast (ADS-B) and multi-lateration (MLAT) systems, is gaining significant research interest. This letter investigates the problem of optimal anchor station selection for tracking aerial vehicles, and proposes a novel heuristic learning scheme termed as fishing net-like optimization (FNO). Specifically, we perform constrained random walk steps on a two-dimensional surface to optimize the initial anchor stations’ parameters. FNO also incorporates with new evaluation strategies and acceleration techniques to accelerate the convergence speed. Experimental results demonstrate that FNO can achieve better selection of the anchor stations, and the accuracy of the chosen MLAT can be improved by ten times or more with the anchors optimization.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2965-2969"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fishing Net Optimization: A Learning Scheme of Optimizing Multi-Lateration Stations in Air-Ground Vehicle Networks\",\"authors\":\"Haitao Zhao;Chunxi Zhao;Tianyu Zhang;Bo Xu;Jinlong Sun\",\"doi\":\"10.1109/LSP.2024.3479923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated sensing and communication in 6G, particularly for air-ground surveillance using automatic dependent surveillance-broadcast (ADS-B) and multi-lateration (MLAT) systems, is gaining significant research interest. This letter investigates the problem of optimal anchor station selection for tracking aerial vehicles, and proposes a novel heuristic learning scheme termed as fishing net-like optimization (FNO). Specifically, we perform constrained random walk steps on a two-dimensional surface to optimize the initial anchor stations’ parameters. FNO also incorporates with new evaluation strategies and acceleration techniques to accelerate the convergence speed. Experimental results demonstrate that FNO can achieve better selection of the anchor stations, and the accuracy of the chosen MLAT can be improved by ten times or more with the anchors optimization.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"31 \",\"pages\":\"2965-2969\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10715644/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10715644/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fishing Net Optimization: A Learning Scheme of Optimizing Multi-Lateration Stations in Air-Ground Vehicle Networks
Integrated sensing and communication in 6G, particularly for air-ground surveillance using automatic dependent surveillance-broadcast (ADS-B) and multi-lateration (MLAT) systems, is gaining significant research interest. This letter investigates the problem of optimal anchor station selection for tracking aerial vehicles, and proposes a novel heuristic learning scheme termed as fishing net-like optimization (FNO). Specifically, we perform constrained random walk steps on a two-dimensional surface to optimize the initial anchor stations’ parameters. FNO also incorporates with new evaluation strategies and acceleration techniques to accelerate the convergence speed. Experimental results demonstrate that FNO can achieve better selection of the anchor stations, and the accuracy of the chosen MLAT can be improved by ten times or more with the anchors optimization.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.