渔网优化:优化空地车辆网络中多测站的学习方案

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-10-14 DOI:10.1109/LSP.2024.3479923
Haitao Zhao;Chunxi Zhao;Tianyu Zhang;Bo Xu;Jinlong Sun
{"title":"渔网优化:优化空地车辆网络中多测站的学习方案","authors":"Haitao Zhao;Chunxi Zhao;Tianyu Zhang;Bo Xu;Jinlong Sun","doi":"10.1109/LSP.2024.3479923","DOIUrl":null,"url":null,"abstract":"Integrated sensing and communication in 6G, particularly for air-ground surveillance using automatic dependent surveillance-broadcast (ADS-B) and multi-lateration (MLAT) systems, is gaining significant research interest. This letter investigates the problem of optimal anchor station selection for tracking aerial vehicles, and proposes a novel heuristic learning scheme termed as fishing net-like optimization (FNO). Specifically, we perform constrained random walk steps on a two-dimensional surface to optimize the initial anchor stations’ parameters. FNO also incorporates with new evaluation strategies and acceleration techniques to accelerate the convergence speed. Experimental results demonstrate that FNO can achieve better selection of the anchor stations, and the accuracy of the chosen MLAT can be improved by ten times or more with the anchors optimization.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2965-2969"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fishing Net Optimization: A Learning Scheme of Optimizing Multi-Lateration Stations in Air-Ground Vehicle Networks\",\"authors\":\"Haitao Zhao;Chunxi Zhao;Tianyu Zhang;Bo Xu;Jinlong Sun\",\"doi\":\"10.1109/LSP.2024.3479923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated sensing and communication in 6G, particularly for air-ground surveillance using automatic dependent surveillance-broadcast (ADS-B) and multi-lateration (MLAT) systems, is gaining significant research interest. This letter investigates the problem of optimal anchor station selection for tracking aerial vehicles, and proposes a novel heuristic learning scheme termed as fishing net-like optimization (FNO). Specifically, we perform constrained random walk steps on a two-dimensional surface to optimize the initial anchor stations’ parameters. FNO also incorporates with new evaluation strategies and acceleration techniques to accelerate the convergence speed. Experimental results demonstrate that FNO can achieve better selection of the anchor stations, and the accuracy of the chosen MLAT can be improved by ten times or more with the anchors optimization.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"31 \",\"pages\":\"2965-2969\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10715644/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10715644/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

6G中的综合传感与通信,特别是使用自动依托监视广播(ADS-B)和多地平线(MLAT)系统的空地监视,正受到越来越多的研究关注。这封信研究了跟踪航空飞行器的最佳锚站选择问题,并提出了一种新颖的启发式学习方案,称为类渔网优化(FNO)。具体来说,我们在二维曲面上执行受限随机行走步骤,以优化初始锚点参数。FNO 还结合了新的评估策略和加速技术,以加快收敛速度。实验结果表明,FNO 可以实现更好的锚点选择,而且通过锚点优化,所选 MLAT 的精度可以提高十倍或更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fishing Net Optimization: A Learning Scheme of Optimizing Multi-Lateration Stations in Air-Ground Vehicle Networks
Integrated sensing and communication in 6G, particularly for air-ground surveillance using automatic dependent surveillance-broadcast (ADS-B) and multi-lateration (MLAT) systems, is gaining significant research interest. This letter investigates the problem of optimal anchor station selection for tracking aerial vehicles, and proposes a novel heuristic learning scheme termed as fishing net-like optimization (FNO). Specifically, we perform constrained random walk steps on a two-dimensional surface to optimize the initial anchor stations’ parameters. FNO also incorporates with new evaluation strategies and acceleration techniques to accelerate the convergence speed. Experimental results demonstrate that FNO can achieve better selection of the anchor stations, and the accuracy of the chosen MLAT can be improved by ten times or more with the anchors optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Diagnosis of Parkinson's Disease Based on Hybrid Fusion Approach of Offline Handwriting Images Differentiable Duration Refinement Using Internal Division for Non-Autoregressive Text-to-Speech SoLAD: Sampling Over Latent Adapter for Few Shot Generation Robust Multi-Prototypes Aware Integration for Zero-Shot Cross-Domain Slot Filling LFSamba: Marry SAM With Mamba for Light Field Salient Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1