Polyp-DAM:通过深度任意模型进行多边形分割

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-09-16 DOI:10.1109/LSP.2024.3461654
Zhuoran Zheng;Chen Wu;Yeying Jin;Xiuyi Jia
{"title":"Polyp-DAM:通过深度任意模型进行多边形分割","authors":"Zhuoran Zheng;Chen Wu;Yeying Jin;Xiuyi Jia","doi":"10.1109/LSP.2024.3461654","DOIUrl":null,"url":null,"abstract":"Recently, large models (Segment Anything model) came on the scene to provide a new baseline for polyp segmentation tasks. This demonstrates that large models with a sufficient image level prior can achieve promising performance on a given task. In this paper, we unfold a new perspective on polyp segmentation modeling by leveraging the Depth Anything Model (DAM) to provide depth prior to polyp segmentation models. Specifically, the input polyp image is first passed through a frozen DAM to generate a depth map. The depth map and the input polyp images are then concatenated and fed into a convolutional neural network with multiscale to generate segmented images. Extensive experimental results demonstrate the effectiveness of our method, and in addition, we observe that our method still performs well on images of polyps with noise.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2925-2929"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyp-DAM: Polyp Segmentation via Depth Anything Model\",\"authors\":\"Zhuoran Zheng;Chen Wu;Yeying Jin;Xiuyi Jia\",\"doi\":\"10.1109/LSP.2024.3461654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, large models (Segment Anything model) came on the scene to provide a new baseline for polyp segmentation tasks. This demonstrates that large models with a sufficient image level prior can achieve promising performance on a given task. In this paper, we unfold a new perspective on polyp segmentation modeling by leveraging the Depth Anything Model (DAM) to provide depth prior to polyp segmentation models. Specifically, the input polyp image is first passed through a frozen DAM to generate a depth map. The depth map and the input polyp images are then concatenated and fed into a convolutional neural network with multiscale to generate segmented images. Extensive experimental results demonstrate the effectiveness of our method, and in addition, we observe that our method still performs well on images of polyps with noise.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"31 \",\"pages\":\"2925-2929\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10680895/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10680895/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

最近,大型模型(Segment Anything model)的出现为息肉分割任务提供了新的基准。这表明,具有足够图像级先验的大型模型可以在给定任务中取得可喜的性能。在本文中,我们利用深度任意模型(DAM)为息肉分割模型提供深度先验,从而为息肉分割建模提供了一个新的视角。具体来说,输入的息肉图像首先通过冻结的 DAM 生成深度图。然后将深度图和输入的息肉图像连接起来,并输入具有多尺度的卷积神经网络,生成分割图像。广泛的实验结果证明了我们方法的有效性,此外,我们还观察到我们的方法在有噪声的息肉图像上仍然表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polyp-DAM: Polyp Segmentation via Depth Anything Model
Recently, large models (Segment Anything model) came on the scene to provide a new baseline for polyp segmentation tasks. This demonstrates that large models with a sufficient image level prior can achieve promising performance on a given task. In this paper, we unfold a new perspective on polyp segmentation modeling by leveraging the Depth Anything Model (DAM) to provide depth prior to polyp segmentation models. Specifically, the input polyp image is first passed through a frozen DAM to generate a depth map. The depth map and the input polyp images are then concatenated and fed into a convolutional neural network with multiscale to generate segmented images. Extensive experimental results demonstrate the effectiveness of our method, and in addition, we observe that our method still performs well on images of polyps with noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Diagnosis of Parkinson's Disease Based on Hybrid Fusion Approach of Offline Handwriting Images Differentiable Duration Refinement Using Internal Division for Non-Autoregressive Text-to-Speech SoLAD: Sampling Over Latent Adapter for Few Shot Generation Robust Multi-Prototypes Aware Integration for Zero-Shot Cross-Domain Slot Filling LFSamba: Marry SAM With Mamba for Light Field Salient Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1