利用水上测量的高光谱反射率(400-900 纳米)评估湖泊营养状况的方法

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Pub Date : 2024-10-01 DOI:10.1109/JSTARS.2024.3472021
Nguyen Thi Thu Ha;Pham Quang Vinh;Nguyen Thien Phuong Thao;Pham Ha Linh;Michael Parsons;Nguyen Van Manh
{"title":"利用水上测量的高光谱反射率(400-900 纳米)评估湖泊营养状况的方法","authors":"Nguyen Thi Thu Ha;Pham Quang Vinh;Nguyen Thien Phuong Thao;Pham Ha Linh;Michael Parsons;Nguyen Van Manh","doi":"10.1109/JSTARS.2024.3472021","DOIUrl":null,"url":null,"abstract":"The effective monitoring of eutrophication in inland water bodies is crucial for environmental management and pollution prevention. This study conducts a comprehensive analysis of in situ hyperspectral reflectance data (400–900 nm) and the trophic state index (TSI) obtained from 365 points across ten lakes and reservoirs in Northern Vietnam to propose a trophic classification based on water reflectance spectra features and a TSI estimation model for diagnosis and assessment of lake trophic status. By analyzing the quantity of reflectance peaks and their heights, our study identifies three distinct water reflectance spectra classes corresponding to three trophic levels: mesotrophic to lightly eutrophic, highly eutrophic, and hypertrophic. This classification enables the quick identification of trophic levels directly at the in situ radiometric measurement sites. Our study demonstrates that a logarithmic function of the band ratio, \n<inline-formula><tex-math>${{\\mathbf{R}}_{\\mathbf{rs}}}( {715} )/{{\\mathbf{R}}_{\\mathbf{rs}}}( {560} )$</tex-math></inline-formula>\n, is robust for estimating TSI (\n<inline-formula><tex-math>${{{\\bm{R}}}^2}$</tex-math></inline-formula>\n = 0.85 and 0.94; root-mean-square error = 5.0 and 3.7 in calibration and validation, respectively), particularly in algal-dominated waters. These findings represent a practical application of hyperspectral remote sensing for effective eutrophication management. They also highlight the potential use of multispectral optical imagery for monitoring eutrophication in tropical regions.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"17890-17902"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10702456","citationCount":"0","resultStr":"{\"title\":\"A Method for Assessing the Lake Trophic Status Using Hyperspectral Reflectance (400–900 nm) Measured Above Water\",\"authors\":\"Nguyen Thi Thu Ha;Pham Quang Vinh;Nguyen Thien Phuong Thao;Pham Ha Linh;Michael Parsons;Nguyen Van Manh\",\"doi\":\"10.1109/JSTARS.2024.3472021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effective monitoring of eutrophication in inland water bodies is crucial for environmental management and pollution prevention. This study conducts a comprehensive analysis of in situ hyperspectral reflectance data (400–900 nm) and the trophic state index (TSI) obtained from 365 points across ten lakes and reservoirs in Northern Vietnam to propose a trophic classification based on water reflectance spectra features and a TSI estimation model for diagnosis and assessment of lake trophic status. By analyzing the quantity of reflectance peaks and their heights, our study identifies three distinct water reflectance spectra classes corresponding to three trophic levels: mesotrophic to lightly eutrophic, highly eutrophic, and hypertrophic. This classification enables the quick identification of trophic levels directly at the in situ radiometric measurement sites. Our study demonstrates that a logarithmic function of the band ratio, \\n<inline-formula><tex-math>${{\\\\mathbf{R}}_{\\\\mathbf{rs}}}( {715} )/{{\\\\mathbf{R}}_{\\\\mathbf{rs}}}( {560} )$</tex-math></inline-formula>\\n, is robust for estimating TSI (\\n<inline-formula><tex-math>${{{\\\\bm{R}}}^2}$</tex-math></inline-formula>\\n = 0.85 and 0.94; root-mean-square error = 5.0 and 3.7 in calibration and validation, respectively), particularly in algal-dominated waters. These findings represent a practical application of hyperspectral remote sensing for effective eutrophication management. They also highlight the potential use of multispectral optical imagery for monitoring eutrophication in tropical regions.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"17890-17902\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10702456\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10702456/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10702456/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

有效监测内陆水体富营养化对环境管理和污染防治至关重要。本研究对越南北部十个湖泊和水库的 365 个点的原位高光谱反射率数据(400-900 nm)和营养状态指数(TSI)进行了综合分析,提出了基于水体反射光谱特征的营养分类和 TSI 估算模型,用于诊断和评估湖泊的营养状态。通过分析反射率峰值的数量及其高度,我们的研究确定了三个不同的水体反射率光谱等级,分别对应三个营养级:中营养到轻度富营养化、高度富营养化和富营养化。这种分类方法可直接在原位辐射测量点快速识别营养级。我们的研究表明,波段比的对数函数 ${{\mathbf{R}}_{\mathbf{rs}}}( {715} )/{{\mathbf{R}}_{{\mathbf{rs}}}( {560} )$ 是估算 TSI 的可靠方法(${{\mathb{R}}}}^2}$ = 0.85 和 0.94;校准和验证的均方根误差分别为 5.0 和 3.7),尤其是在藻类为主的水域。这些发现代表了高光谱遥感在有效管理富营养化方面的实际应用。它们还强调了多光谱光学图像在监测热带地区富营养化方面的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Method for Assessing the Lake Trophic Status Using Hyperspectral Reflectance (400–900 nm) Measured Above Water
The effective monitoring of eutrophication in inland water bodies is crucial for environmental management and pollution prevention. This study conducts a comprehensive analysis of in situ hyperspectral reflectance data (400–900 nm) and the trophic state index (TSI) obtained from 365 points across ten lakes and reservoirs in Northern Vietnam to propose a trophic classification based on water reflectance spectra features and a TSI estimation model for diagnosis and assessment of lake trophic status. By analyzing the quantity of reflectance peaks and their heights, our study identifies three distinct water reflectance spectra classes corresponding to three trophic levels: mesotrophic to lightly eutrophic, highly eutrophic, and hypertrophic. This classification enables the quick identification of trophic levels directly at the in situ radiometric measurement sites. Our study demonstrates that a logarithmic function of the band ratio, ${{\mathbf{R}}_{\mathbf{rs}}}( {715} )/{{\mathbf{R}}_{\mathbf{rs}}}( {560} )$ , is robust for estimating TSI ( ${{{\bm{R}}}^2}$ = 0.85 and 0.94; root-mean-square error = 5.0 and 3.7 in calibration and validation, respectively), particularly in algal-dominated waters. These findings represent a practical application of hyperspectral remote sensing for effective eutrophication management. They also highlight the potential use of multispectral optical imagery for monitoring eutrophication in tropical regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
期刊最新文献
Are Mediators of Grief Reactions Better Predictors Than Risk Factors? A Study Testing the Role of Satisfaction With Rituals, Perceived Social Support, and Coping Strategies. Frontcover Unsupervised Domain Adaptative SAR Target Detection Based on Feature Decomposition and Uncertainty-Guided Self-Training Evaluation of Total Precipitable Water Trends From Reprocessed MiRS SNPP ATMS Observations, 2012–2021 Multiscale Attention-UNet-Based Near-Real-Time Precipitation Estimation From FY-4A/AGRI and Doppler Radar Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1