利用深度学习对毫米波雷达图像上的隐蔽物体进行像素级定位

Mahshid Asri;Rahul Chowdhury;Allison Care;David Femi Lamptey;Ann Morgenthaler;Octavia Camps;Carey M. Rappaport
{"title":"利用深度学习对毫米波雷达图像上的隐蔽物体进行像素级定位","authors":"Mahshid Asri;Rahul Chowdhury;Allison Care;David Femi Lamptey;Ann Morgenthaler;Octavia Camps;Carey M. Rappaport","doi":"10.1109/TRS.2024.3476411","DOIUrl":null,"url":null,"abstract":"Automatic detection and localization of anomalies on radar images of personnel taken at the airport security checkpoints is a necessary step of having an end-to-end automatic threat detection algorithm. This article presents two deep learning-based solutions for pixel-wise localization of body-worn anomalies. The trained 2-D and semi-supervised U-Net models can accurately detect and localize foreign objects on all body regions by producing anomaly and body masks for each input radar image.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"1027-1035"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pixel-Wise Localization of Concealed Objects on Millimeter-Wave Radar Images Using Deep Learning\",\"authors\":\"Mahshid Asri;Rahul Chowdhury;Allison Care;David Femi Lamptey;Ann Morgenthaler;Octavia Camps;Carey M. Rappaport\",\"doi\":\"10.1109/TRS.2024.3476411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection and localization of anomalies on radar images of personnel taken at the airport security checkpoints is a necessary step of having an end-to-end automatic threat detection algorithm. This article presents two deep learning-based solutions for pixel-wise localization of body-worn anomalies. The trained 2-D and semi-supervised U-Net models can accurately detect and localize foreign objects on all body regions by producing anomaly and body masks for each input radar image.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"2 \",\"pages\":\"1027-1035\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10707336/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10707336/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动检测和定位机场安检站人员雷达图像上的异常点是端到端自动威胁检测算法的必要步骤。本文介绍了两种基于深度学习的解决方案,用于对随身携带的异常图像进行像素级定位。经过训练的二维和半监督 U-Net 模型可为每张输入雷达图像生成异常和人体模型,从而准确检测和定位所有人体区域的异物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pixel-Wise Localization of Concealed Objects on Millimeter-Wave Radar Images Using Deep Learning
Automatic detection and localization of anomalies on radar images of personnel taken at the airport security checkpoints is a necessary step of having an end-to-end automatic threat detection algorithm. This article presents two deep learning-based solutions for pixel-wise localization of body-worn anomalies. The trained 2-D and semi-supervised U-Net models can accurately detect and localize foreign objects on all body regions by producing anomaly and body masks for each input radar image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to “Engineering Constraints and Application Regimes of Quantum Radar” Range–Doppler Resolution Enhancement of Ground-Based Radar by Data Extrapolation Technique Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars Identification and High-Accuracy Range Estimation With Doppler Tags in Radar Applications Stepped-Frequency PMCW Waveforms for Automotive Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1