{"title":"基于 SNR-SVR 的 GNSS-R 雪深反演研究","authors":"Yuan Hu;Jingxin Wang;Wei Liu;Xintai Yuan;Jens Wickert","doi":"10.1109/JSTARS.2024.3470508","DOIUrl":null,"url":null,"abstract":"The global navigation satellite system reflectometry (GNSS-R) technology has shown significant potential in retrieving snow depth using signal-to-noise ratio (SNR) data. However, compared to traditional in situ snow depth measurement techniques, we have observed that the accuracy and performance of GNSS-R can be significantly impacted under certain conditions, particularly when the elevation angle increases. This is due to the attenuation of the multipath effect, which is particularly evident during snow-free periods and under low-snow conditions where snow depths are below 50 cm. To address these limitations, we propose a snow depth inversion method that integrates SNR signals with the support vector regression algorithm, utilizing SNR sequences as feature inputs. We conducted studies at stations P351 and P030, covering elevation angles ranging from 5° to 20°, 5° to 25°, and 5° to 30°. The experimental results show that the root-mean-square error at both the stations decreased by 50% or more compared to traditional methods, demonstrating an improvement in inversion accuracy across different elevation angles. More importantly, the inversion accuracy of our method does not significantly lag behind that at lower elevation angles, indicating its excellent performance under challenging conditions. These findings highlight the contribution of our method in enhancing the accuracy of snow depth retrieval and its potential to drive further advancements in the field of GNSS-R snow depth inversion.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"18025-18037"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10703113","citationCount":"0","resultStr":"{\"title\":\"GNSS-R Snow Depth Inversion Study Based on SNR-SVR\",\"authors\":\"Yuan Hu;Jingxin Wang;Wei Liu;Xintai Yuan;Jens Wickert\",\"doi\":\"10.1109/JSTARS.2024.3470508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global navigation satellite system reflectometry (GNSS-R) technology has shown significant potential in retrieving snow depth using signal-to-noise ratio (SNR) data. However, compared to traditional in situ snow depth measurement techniques, we have observed that the accuracy and performance of GNSS-R can be significantly impacted under certain conditions, particularly when the elevation angle increases. This is due to the attenuation of the multipath effect, which is particularly evident during snow-free periods and under low-snow conditions where snow depths are below 50 cm. To address these limitations, we propose a snow depth inversion method that integrates SNR signals with the support vector regression algorithm, utilizing SNR sequences as feature inputs. We conducted studies at stations P351 and P030, covering elevation angles ranging from 5° to 20°, 5° to 25°, and 5° to 30°. The experimental results show that the root-mean-square error at both the stations decreased by 50% or more compared to traditional methods, demonstrating an improvement in inversion accuracy across different elevation angles. More importantly, the inversion accuracy of our method does not significantly lag behind that at lower elevation angles, indicating its excellent performance under challenging conditions. These findings highlight the contribution of our method in enhancing the accuracy of snow depth retrieval and its potential to drive further advancements in the field of GNSS-R snow depth inversion.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"18025-18037\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10703113\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10703113/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10703113/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
GNSS-R Snow Depth Inversion Study Based on SNR-SVR
The global navigation satellite system reflectometry (GNSS-R) technology has shown significant potential in retrieving snow depth using signal-to-noise ratio (SNR) data. However, compared to traditional in situ snow depth measurement techniques, we have observed that the accuracy and performance of GNSS-R can be significantly impacted under certain conditions, particularly when the elevation angle increases. This is due to the attenuation of the multipath effect, which is particularly evident during snow-free periods and under low-snow conditions where snow depths are below 50 cm. To address these limitations, we propose a snow depth inversion method that integrates SNR signals with the support vector regression algorithm, utilizing SNR sequences as feature inputs. We conducted studies at stations P351 and P030, covering elevation angles ranging from 5° to 20°, 5° to 25°, and 5° to 30°. The experimental results show that the root-mean-square error at both the stations decreased by 50% or more compared to traditional methods, demonstrating an improvement in inversion accuracy across different elevation angles. More importantly, the inversion accuracy of our method does not significantly lag behind that at lower elevation angles, indicating its excellent performance under challenging conditions. These findings highlight the contribution of our method in enhancing the accuracy of snow depth retrieval and its potential to drive further advancements in the field of GNSS-R snow depth inversion.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.