{"title":"幻影 BTZ 黑洞","authors":"B. Eslam Panah, M. E. Rodrigues","doi":"10.1140/epjc/s10052-024-13485-z","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by the impact of the phantom field (or anti-Maxwell field) on the structure of three-dimensional black holes in the presence of the cosmological constant, we present the first extraction of solutions for the phantom BTZ (A)dS black hole. In this study, we analyze the effect of the phantom field on the horizon structure. Furthermore, we compare the BTZ black holes in the presence of both the phantom and Maxwell fields. Additionally, we calculate the conserved and thermodynamic quantities of the phantom BTZ black holes, demonstrating their compliance with the first law of thermodynamics. Subsequently, we assess the effects of the electrical charge and the cosmological constant on the local stability in the canonical ensemble by considering these fields with respect to the heat capacity. We then investigate the global stability area of the BTZ black holes with phantom and Maxwell fields within the grand canonical ensemble using Gibbs free energy. In this analysis, we evaluate the influence of the electrical charge and the cosmological constant on this area.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 10","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13485-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Phantom BTZ black holes\",\"authors\":\"B. Eslam Panah, M. E. Rodrigues\",\"doi\":\"10.1140/epjc/s10052-024-13485-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Motivated by the impact of the phantom field (or anti-Maxwell field) on the structure of three-dimensional black holes in the presence of the cosmological constant, we present the first extraction of solutions for the phantom BTZ (A)dS black hole. In this study, we analyze the effect of the phantom field on the horizon structure. Furthermore, we compare the BTZ black holes in the presence of both the phantom and Maxwell fields. Additionally, we calculate the conserved and thermodynamic quantities of the phantom BTZ black holes, demonstrating their compliance with the first law of thermodynamics. Subsequently, we assess the effects of the electrical charge and the cosmological constant on the local stability in the canonical ensemble by considering these fields with respect to the heat capacity. We then investigate the global stability area of the BTZ black holes with phantom and Maxwell fields within the grand canonical ensemble using Gibbs free energy. In this analysis, we evaluate the influence of the electrical charge and the cosmological constant on this area.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 10\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13485-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13485-z\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13485-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Motivated by the impact of the phantom field (or anti-Maxwell field) on the structure of three-dimensional black holes in the presence of the cosmological constant, we present the first extraction of solutions for the phantom BTZ (A)dS black hole. In this study, we analyze the effect of the phantom field on the horizon structure. Furthermore, we compare the BTZ black holes in the presence of both the phantom and Maxwell fields. Additionally, we calculate the conserved and thermodynamic quantities of the phantom BTZ black holes, demonstrating their compliance with the first law of thermodynamics. Subsequently, we assess the effects of the electrical charge and the cosmological constant on the local stability in the canonical ensemble by considering these fields with respect to the heat capacity. We then investigate the global stability area of the BTZ black holes with phantom and Maxwell fields within the grand canonical ensemble using Gibbs free energy. In this analysis, we evaluate the influence of the electrical charge and the cosmological constant on this area.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.