{"title":"高分辨率(30 米)烧毁面积产品提高了非洲碳排放估算能力","authors":"Baoye Qi, Zhaoming Zhang, Tengfei Long, Guojin He, Guizhou Wang, Yan Peng, Zekun Xu","doi":"10.1029/2024EF005051","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Fire significantly contributes to greenhouse gas emissions. The current global burned area (BA) products mainly have coarse native spatial resolution, which leads to underestimation of global BA and carbon emissions from biomass burning. Performances of BA products in Africa from GABAM (30 m), MCD64A1 (500 m), GFED4s (0.25°), FireCCI51 (250 m), and GFED5 (0.25°) were compared. From 2014 to 2020, GFED5 detected the most BA, 1.58 times more than GABAM during the same period. GABAM detected 0.09 Mkm<sup>2</sup> more burned area than FireCCI51 on average. From 2014 to 2016, GABAM detected an average of 2.99 Mkm<sup>2</sup> of BA in Africa, which was 1.03 times more than GFED4s. From 2014 to 2021, the average African BA derived from GABAM was 2.89 Mkm<sup>2</sup>, 1.22 times more than MCD64A1. The increase in BA will inevitably lead to an increase in the estimation of carbon emissions from biomass burning. Based on GABAM products and GFED framework, we estimated the average vegetation burning carbon emissions in Africa from 2014 to 2021 to be 1113.25 Tg, which is higher than GFED4s' carbon emissions in the same time period. This shows that the use of high-resolution (30 m) burned area products to estimate carbon emissions can effectively avoid the underestimation of overall fire carbon emissions.</p>\n </section>\n </div>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 10","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005051","citationCount":"0","resultStr":"{\"title\":\"High Resolution (30 m) Burned Area Product Improves the Ability for Carbon Emission Estimation in Africa\",\"authors\":\"Baoye Qi, Zhaoming Zhang, Tengfei Long, Guojin He, Guizhou Wang, Yan Peng, Zekun Xu\",\"doi\":\"10.1029/2024EF005051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Fire significantly contributes to greenhouse gas emissions. The current global burned area (BA) products mainly have coarse native spatial resolution, which leads to underestimation of global BA and carbon emissions from biomass burning. Performances of BA products in Africa from GABAM (30 m), MCD64A1 (500 m), GFED4s (0.25°), FireCCI51 (250 m), and GFED5 (0.25°) were compared. From 2014 to 2020, GFED5 detected the most BA, 1.58 times more than GABAM during the same period. GABAM detected 0.09 Mkm<sup>2</sup> more burned area than FireCCI51 on average. From 2014 to 2016, GABAM detected an average of 2.99 Mkm<sup>2</sup> of BA in Africa, which was 1.03 times more than GFED4s. From 2014 to 2021, the average African BA derived from GABAM was 2.89 Mkm<sup>2</sup>, 1.22 times more than MCD64A1. The increase in BA will inevitably lead to an increase in the estimation of carbon emissions from biomass burning. Based on GABAM products and GFED framework, we estimated the average vegetation burning carbon emissions in Africa from 2014 to 2021 to be 1113.25 Tg, which is higher than GFED4s' carbon emissions in the same time period. This shows that the use of high-resolution (30 m) burned area products to estimate carbon emissions can effectively avoid the underestimation of overall fire carbon emissions.</p>\\n </section>\\n </div>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005051\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005051\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005051","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
High Resolution (30 m) Burned Area Product Improves the Ability for Carbon Emission Estimation in Africa
Fire significantly contributes to greenhouse gas emissions. The current global burned area (BA) products mainly have coarse native spatial resolution, which leads to underestimation of global BA and carbon emissions from biomass burning. Performances of BA products in Africa from GABAM (30 m), MCD64A1 (500 m), GFED4s (0.25°), FireCCI51 (250 m), and GFED5 (0.25°) were compared. From 2014 to 2020, GFED5 detected the most BA, 1.58 times more than GABAM during the same period. GABAM detected 0.09 Mkm2 more burned area than FireCCI51 on average. From 2014 to 2016, GABAM detected an average of 2.99 Mkm2 of BA in Africa, which was 1.03 times more than GFED4s. From 2014 to 2021, the average African BA derived from GABAM was 2.89 Mkm2, 1.22 times more than MCD64A1. The increase in BA will inevitably lead to an increase in the estimation of carbon emissions from biomass burning. Based on GABAM products and GFED framework, we estimated the average vegetation burning carbon emissions in Africa from 2014 to 2021 to be 1113.25 Tg, which is higher than GFED4s' carbon emissions in the same time period. This shows that the use of high-resolution (30 m) burned area products to estimate carbon emissions can effectively avoid the underestimation of overall fire carbon emissions.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.