{"title":"初始条件和气象干旱在土壤水分干旱传播中的作用:南亚上空基于事件的因果分析","authors":"Amitesh Gupta, L. Karthikeyan","doi":"10.1029/2024EF004674","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>The role of meteorological droughts and initial conditions (land and atmosphere) in soil moisture drought (SMD) propagation are not yet fully understood. This work uses a drought event-based causal framework to investigate the relative importance of meteorological drought (MD) duration and intensity and initial conditions that result in surface and rootzone SMD, considering their event-level propagation time (PT) over South Asia. Initially, spatial variability of drought propagation is assessed by the Propagation Ratio (PR) computed based on MD counts that trigger SMD at various lags. PR depicts 2–3 months slower rootzone propagation than at surface. The gradual decrease in PR with increasing regional aridity indicates faster propagation over humid regions. The causal impact of initial conditions and MD parameters on propagating SMD are evaluated using normalized mutual information and a newly proposed normalized conditional mutual information. We found greater importance of triggering MD parameters followed by initial soil moisture condition on propagating SMD. This behavior is more evident for the surface layer propagation at shorter PT. There is a confounding effect of initial atmospheric conditions on drought propagation through initial soil moisture, depicting the significance of land-atmosphere interactions prior to propagation. In the rootzone propagation, initial soil moisture has a greater influence on propagation, especially at longer PT, indicating the significance of soil moisture persistence. Stronger causal links obtained through the joint influence of MD parameters on SMD suggest the importance of accounting for MD duration and intensity simultaneously, which are not considered in drought index-based propagation studies.</p>\n </section>\n </div>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 10","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004674","citationCount":"0","resultStr":"{\"title\":\"Role of Initial Conditions and Meteorological Drought in Soil Moisture Drought Propagation: An Event-Based Causal Analysis Over South Asia\",\"authors\":\"Amitesh Gupta, L. Karthikeyan\",\"doi\":\"10.1029/2024EF004674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>The role of meteorological droughts and initial conditions (land and atmosphere) in soil moisture drought (SMD) propagation are not yet fully understood. This work uses a drought event-based causal framework to investigate the relative importance of meteorological drought (MD) duration and intensity and initial conditions that result in surface and rootzone SMD, considering their event-level propagation time (PT) over South Asia. Initially, spatial variability of drought propagation is assessed by the Propagation Ratio (PR) computed based on MD counts that trigger SMD at various lags. PR depicts 2–3 months slower rootzone propagation than at surface. The gradual decrease in PR with increasing regional aridity indicates faster propagation over humid regions. The causal impact of initial conditions and MD parameters on propagating SMD are evaluated using normalized mutual information and a newly proposed normalized conditional mutual information. We found greater importance of triggering MD parameters followed by initial soil moisture condition on propagating SMD. This behavior is more evident for the surface layer propagation at shorter PT. There is a confounding effect of initial atmospheric conditions on drought propagation through initial soil moisture, depicting the significance of land-atmosphere interactions prior to propagation. In the rootzone propagation, initial soil moisture has a greater influence on propagation, especially at longer PT, indicating the significance of soil moisture persistence. Stronger causal links obtained through the joint influence of MD parameters on SMD suggest the importance of accounting for MD duration and intensity simultaneously, which are not considered in drought index-based propagation studies.</p>\\n </section>\\n </div>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004674\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004674\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004674","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Role of Initial Conditions and Meteorological Drought in Soil Moisture Drought Propagation: An Event-Based Causal Analysis Over South Asia
The role of meteorological droughts and initial conditions (land and atmosphere) in soil moisture drought (SMD) propagation are not yet fully understood. This work uses a drought event-based causal framework to investigate the relative importance of meteorological drought (MD) duration and intensity and initial conditions that result in surface and rootzone SMD, considering their event-level propagation time (PT) over South Asia. Initially, spatial variability of drought propagation is assessed by the Propagation Ratio (PR) computed based on MD counts that trigger SMD at various lags. PR depicts 2–3 months slower rootzone propagation than at surface. The gradual decrease in PR with increasing regional aridity indicates faster propagation over humid regions. The causal impact of initial conditions and MD parameters on propagating SMD are evaluated using normalized mutual information and a newly proposed normalized conditional mutual information. We found greater importance of triggering MD parameters followed by initial soil moisture condition on propagating SMD. This behavior is more evident for the surface layer propagation at shorter PT. There is a confounding effect of initial atmospheric conditions on drought propagation through initial soil moisture, depicting the significance of land-atmosphere interactions prior to propagation. In the rootzone propagation, initial soil moisture has a greater influence on propagation, especially at longer PT, indicating the significance of soil moisture persistence. Stronger causal links obtained through the joint influence of MD parameters on SMD suggest the importance of accounting for MD duration and intensity simultaneously, which are not considered in drought index-based propagation studies.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.