人工智能驱动的洞察力:利用卫星数据精确跟踪发电厂碳排放情况

Zeqi Zhang, Di Leng, Yingjie Li, Xuanang Gui, Yuheng Cheng, Junhua Zhao, Zhengwen Zhang, Amer M. Y. M. Ghias
{"title":"人工智能驱动的洞察力:利用卫星数据精确跟踪发电厂碳排放情况","authors":"Zeqi Zhang,&nbsp;Di Leng,&nbsp;Yingjie Li,&nbsp;Xuanang Gui,&nbsp;Yuheng Cheng,&nbsp;Junhua Zhao,&nbsp;Zhengwen Zhang,&nbsp;Amer M. Y. M. Ghias","doi":"10.1049/enc2.12129","DOIUrl":null,"url":null,"abstract":"<p>Human activities have been driving massive greenhouse gas emissions, causing global warming, and triggering increasingly frequent extreme weather events that severely threaten the environment. Power generation is the leading contributor to anthropogenic emissions, making precise, real-time measurement and monitoring of power plant carbon emissions crucial in reducing climate change. This study uses a new sophisticated pipeline that combines tropospheric monitoring instrument satellite data, power plant attributes, and advanced artificial intelligence algorithms to build a predictive carbon emission model. The approach utilizes multimodal data processing, encoding, and model optimisation. Experimental results confirm that this pipeline can automatically extract and utilize vast amounts of relevant data, thereby enabling the artificial intelligence model to accurately predict power plant carbon emissions and providing a vital tool for reducing global warming.</p>","PeriodicalId":100467,"journal":{"name":"Energy Conversion and Economics","volume":"5 5","pages":"293-300"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.12129","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-driven insights: Precision tracking of power plant carbon emissions using satellite data\",\"authors\":\"Zeqi Zhang,&nbsp;Di Leng,&nbsp;Yingjie Li,&nbsp;Xuanang Gui,&nbsp;Yuheng Cheng,&nbsp;Junhua Zhao,&nbsp;Zhengwen Zhang,&nbsp;Amer M. Y. M. Ghias\",\"doi\":\"10.1049/enc2.12129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human activities have been driving massive greenhouse gas emissions, causing global warming, and triggering increasingly frequent extreme weather events that severely threaten the environment. Power generation is the leading contributor to anthropogenic emissions, making precise, real-time measurement and monitoring of power plant carbon emissions crucial in reducing climate change. This study uses a new sophisticated pipeline that combines tropospheric monitoring instrument satellite data, power plant attributes, and advanced artificial intelligence algorithms to build a predictive carbon emission model. The approach utilizes multimodal data processing, encoding, and model optimisation. Experimental results confirm that this pipeline can automatically extract and utilize vast amounts of relevant data, thereby enabling the artificial intelligence model to accurately predict power plant carbon emissions and providing a vital tool for reducing global warming.</p>\",\"PeriodicalId\":100467,\"journal\":{\"name\":\"Energy Conversion and Economics\",\"volume\":\"5 5\",\"pages\":\"293-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.12129\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/enc2.12129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Economics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enc2.12129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类活动导致大量温室气体排放,造成全球变暖,并引发日益频繁的极端天气事件,严重威胁环境。发电是人为排放的主要来源,因此对发电厂碳排放进行精确、实时的测量和监测对减少气候变化至关重要。这项研究采用了一种新的精密管道,将对流层监测仪器卫星数据、发电厂属性和先进的人工智能算法结合起来,建立了一个预测性碳排放模型。该方法利用多模态数据处理、编码和模型优化。实验结果证实,该管道可自动提取和利用大量相关数据,从而使人工智能模型能够准确预测发电厂的碳排放量,为减少全球变暖提供了重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence-driven insights: Precision tracking of power plant carbon emissions using satellite data

Human activities have been driving massive greenhouse gas emissions, causing global warming, and triggering increasingly frequent extreme weather events that severely threaten the environment. Power generation is the leading contributor to anthropogenic emissions, making precise, real-time measurement and monitoring of power plant carbon emissions crucial in reducing climate change. This study uses a new sophisticated pipeline that combines tropospheric monitoring instrument satellite data, power plant attributes, and advanced artificial intelligence algorithms to build a predictive carbon emission model. The approach utilizes multimodal data processing, encoding, and model optimisation. Experimental results confirm that this pipeline can automatically extract and utilize vast amounts of relevant data, thereby enabling the artificial intelligence model to accurately predict power plant carbon emissions and providing a vital tool for reducing global warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel online reinforcement learning-based linear quadratic regulator for three-level neutral-point clamped DC/AC inverter Artificial intelligence-driven insights: Precision tracking of power plant carbon emissions using satellite data Forecasting masked-load with invisible distributed energy resources based on transfer learning and Bayesian tuning Collaborative deployment of multiple reinforcement methods for network-loss reduction in distribution system with seasonal loads State-of-health estimation of lithium-ion batteries: A comprehensive literature review from cell to pack levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1