北纬 81°附近北格陵兰在过去 6000 年中的古地磁周期性变化

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geochemistry Geophysics Geosystems Pub Date : 2024-10-26 DOI:10.1029/2024GC011620
Juliette Girard, Brendan T. Reilly, Guillaume St-Onge, France Lagroix, Jean-Carlos Montero-Serrano, Joesph S. Stoner, Anne E. Jennings
{"title":"北纬 81°附近北格陵兰在过去 6000 年中的古地磁周期性变化","authors":"Juliette Girard,&nbsp;Brendan T. Reilly,&nbsp;Guillaume St-Onge,&nbsp;France Lagroix,&nbsp;Jean-Carlos Montero-Serrano,&nbsp;Joesph S. Stoner,&nbsp;Anne E. Jennings","doi":"10.1029/2024GC011620","DOIUrl":null,"url":null,"abstract":"<p>We investigate full vector paleomagnetic changes recorded in high-resolution sediments of Petermann Fjord, North Greenland, deposited over the last 6 kyr, in the context of the recent rapid changes in the geomagnetic field. A Paleomagnetic Secular Variation (PSV) stack (inclination, declination, and relative paleointensity) was reconstructed using four marine sediment cores with an independent age model constrained by seven radiocarbon ages. Magnetic investigations demonstrate that the paleomagnetic signal is carried by low coercivity ferrimagnetic minerals and is well reproduced in all cores, attesting to the quality and reliability of the paleomagnetic recording of these sediments. This signal is broadly consistent in directional changes with distant records in North America and the northern North Atlantic at centennial and millennial timescales, and has millennial scale intensity variations that are consistent with model predictions. The offset between a magnetization age determined through comparison with a northern North Atlantic PSV reference curve, GREENICE, and the radiocarbon age model indicates either a reasonable lock-in depth of magnetization (∼11 cm from the coretop) or centennial-scale reservoir age variation through time in the fjord. Reconstructed virtual geomagnetic pole (VGP) migration for the last 6 kyr shows that the recent migration of the magnetic North Pole is consistent with secular paleomagnetic variations on geologic timescales. Our results suggest that magnetic field intensity variations (temporal and spatial) are linked to magnetic flux lobe dynamics and influence the VGP migration.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011620","citationCount":"0","resultStr":"{\"title\":\"Paleomagnetic Secular Variations in North Greenland Around 81°N Over the Last 6,000 Years\",\"authors\":\"Juliette Girard,&nbsp;Brendan T. Reilly,&nbsp;Guillaume St-Onge,&nbsp;France Lagroix,&nbsp;Jean-Carlos Montero-Serrano,&nbsp;Joesph S. Stoner,&nbsp;Anne E. Jennings\",\"doi\":\"10.1029/2024GC011620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate full vector paleomagnetic changes recorded in high-resolution sediments of Petermann Fjord, North Greenland, deposited over the last 6 kyr, in the context of the recent rapid changes in the geomagnetic field. A Paleomagnetic Secular Variation (PSV) stack (inclination, declination, and relative paleointensity) was reconstructed using four marine sediment cores with an independent age model constrained by seven radiocarbon ages. Magnetic investigations demonstrate that the paleomagnetic signal is carried by low coercivity ferrimagnetic minerals and is well reproduced in all cores, attesting to the quality and reliability of the paleomagnetic recording of these sediments. This signal is broadly consistent in directional changes with distant records in North America and the northern North Atlantic at centennial and millennial timescales, and has millennial scale intensity variations that are consistent with model predictions. The offset between a magnetization age determined through comparison with a northern North Atlantic PSV reference curve, GREENICE, and the radiocarbon age model indicates either a reasonable lock-in depth of magnetization (∼11 cm from the coretop) or centennial-scale reservoir age variation through time in the fjord. Reconstructed virtual geomagnetic pole (VGP) migration for the last 6 kyr shows that the recent migration of the magnetic North Pole is consistent with secular paleomagnetic variations on geologic timescales. Our results suggest that magnetic field intensity variations (temporal and spatial) are linked to magnetic flux lobe dynamics and influence the VGP migration.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"25 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011620\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011620\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011620","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了北格陵兰彼得曼峡湾高分辨率沉积物中记录的全矢量古地磁变化,这些沉积物是在最近 6 千年地磁场快速变化的背景下沉积下来的。利用四个海洋沉积物岩心重建了古地磁周期性变化(PSV)堆栈(倾角、偏角和相对古强度),并通过七个放射性碳年龄建立了独立的年龄模型。磁学研究表明,古地磁信号由低矫顽力铁磁性矿物携带,在所有岩心中都得到了很好的再现,证明了这些沉积物古地磁记录的质量和可靠性。该信号在百年和千年时间尺度上与北美洲和北大西洋北部的遥远记录在方向变化上基本一致,其千年尺度的强度变化与模型预测一致。通过与北大西洋北部 PSV 参考曲线 GREENICE 比较确定的磁化年龄与放射性碳年龄模型之间的偏移表明,峡湾的磁化锁定深度是合理的(距岩心顶 11 厘米),或者峡湾的储层年龄随时间发生了百年尺度的变化。对过去 6 千年虚拟地磁极(VGP)迁移的重建表明,最近磁北极的迁移与地质时间尺度上的古地磁变化是一致的。我们的研究结果表明,磁场强度变化(时间和空间)与磁通叶动力学有关,并影响着虚拟地磁极的迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Paleomagnetic Secular Variations in North Greenland Around 81°N Over the Last 6,000 Years

We investigate full vector paleomagnetic changes recorded in high-resolution sediments of Petermann Fjord, North Greenland, deposited over the last 6 kyr, in the context of the recent rapid changes in the geomagnetic field. A Paleomagnetic Secular Variation (PSV) stack (inclination, declination, and relative paleointensity) was reconstructed using four marine sediment cores with an independent age model constrained by seven radiocarbon ages. Magnetic investigations demonstrate that the paleomagnetic signal is carried by low coercivity ferrimagnetic minerals and is well reproduced in all cores, attesting to the quality and reliability of the paleomagnetic recording of these sediments. This signal is broadly consistent in directional changes with distant records in North America and the northern North Atlantic at centennial and millennial timescales, and has millennial scale intensity variations that are consistent with model predictions. The offset between a magnetization age determined through comparison with a northern North Atlantic PSV reference curve, GREENICE, and the radiocarbon age model indicates either a reasonable lock-in depth of magnetization (∼11 cm from the coretop) or centennial-scale reservoir age variation through time in the fjord. Reconstructed virtual geomagnetic pole (VGP) migration for the last 6 kyr shows that the recent migration of the magnetic North Pole is consistent with secular paleomagnetic variations on geologic timescales. Our results suggest that magnetic field intensity variations (temporal and spatial) are linked to magnetic flux lobe dynamics and influence the VGP migration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
期刊最新文献
The Influence of Rotation on the Preservation of Heterogeneities in Magma Oceans Responses of Sr, Nd, and S Isotopes of Seawater to the Volcanic Eruptions During the Early Middle Triassic, South China Influence of Grain Size Evolution on Mantle Plume and LLSVP Dynamics Monitoring Salt Domes Used for Energy Storage With Microseismicity: Insights for a Carbon-Neutral Future Insights Into Magma Reservoir Dynamics From a Global Comparison of Volcanic and Plutonic Zircon Trace Element Variability in Individual Hand Samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1