Chuan Wang, Zhi Li, Yaning Chen, Yupeng Li, Lin Ouyang, Jianyu Zhu, Fan Sun, Shiran Song, Hongwei Li
{"title":"一个世纪以来全球热浪风险及其驱动因素的变化","authors":"Chuan Wang, Zhi Li, Yaning Chen, Yupeng Li, Lin Ouyang, Jianyu Zhu, Fan Sun, Shiran Song, Hongwei Li","doi":"10.1029/2024EF004430","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Heatwaves represent a significant and growing threat to natural ecosystems and socio-economic structures, making heatwave risk mitigation and prevention an important area of research. In exploring heatwave frequency and intensity from 1901 to 2020, the present study finds a sharp increase in both. The study also finds that the spatial distribution of heatwaves is unequal, the volatility of intensity characteristics has become more prominent over time, and the Gini coefficients of four key heatwave indictors have become larger due to increasing dryness. Although heatwaves occur more frequently in drylands, there is greater cumulative heat in humid areas, resulting in a higher heatwave risk in those areas. The global heatwave risk over the past three decades (1991–2020) has increased nearly five-fold compared to the early 20th century (1901–1930). Furthermore, GeoDetector analysis indicates that the Palmer drought severity index (PDSI) and downward surface shortwave radiation (Srad) contributing the most in drylands and humid areas (0.29 and 0.41, respectively). The contribution of relative humidity (RH), wind speed (WS), soil moisture (SM), and the normalized difference vegetation index (NDVI) is also significant in humid areas, but is much smaller in drylands. Composite analysis shows that the years with anomalously high heatwave risk correspond to positive anomalies of 500hPa geopotential height and surface pressure. The inhibition of cloud formation due to sinking air and the resulting increase in temperature in the atmosphere may be increasing the risk of heatwave occurrence. This study emphasizes the urgent need to address worsening climate change impacts.</p>\n </section>\n </div>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 10","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004430","citationCount":"0","resultStr":"{\"title\":\"Changes in Global Heatwave Risk and Its Drivers Over One Century\",\"authors\":\"Chuan Wang, Zhi Li, Yaning Chen, Yupeng Li, Lin Ouyang, Jianyu Zhu, Fan Sun, Shiran Song, Hongwei Li\",\"doi\":\"10.1029/2024EF004430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Heatwaves represent a significant and growing threat to natural ecosystems and socio-economic structures, making heatwave risk mitigation and prevention an important area of research. In exploring heatwave frequency and intensity from 1901 to 2020, the present study finds a sharp increase in both. The study also finds that the spatial distribution of heatwaves is unequal, the volatility of intensity characteristics has become more prominent over time, and the Gini coefficients of four key heatwave indictors have become larger due to increasing dryness. Although heatwaves occur more frequently in drylands, there is greater cumulative heat in humid areas, resulting in a higher heatwave risk in those areas. The global heatwave risk over the past three decades (1991–2020) has increased nearly five-fold compared to the early 20th century (1901–1930). Furthermore, GeoDetector analysis indicates that the Palmer drought severity index (PDSI) and downward surface shortwave radiation (Srad) contributing the most in drylands and humid areas (0.29 and 0.41, respectively). The contribution of relative humidity (RH), wind speed (WS), soil moisture (SM), and the normalized difference vegetation index (NDVI) is also significant in humid areas, but is much smaller in drylands. Composite analysis shows that the years with anomalously high heatwave risk correspond to positive anomalies of 500hPa geopotential height and surface pressure. The inhibition of cloud formation due to sinking air and the resulting increase in temperature in the atmosphere may be increasing the risk of heatwave occurrence. This study emphasizes the urgent need to address worsening climate change impacts.</p>\\n </section>\\n </div>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004430\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004430\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004430","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Changes in Global Heatwave Risk and Its Drivers Over One Century
Heatwaves represent a significant and growing threat to natural ecosystems and socio-economic structures, making heatwave risk mitigation and prevention an important area of research. In exploring heatwave frequency and intensity from 1901 to 2020, the present study finds a sharp increase in both. The study also finds that the spatial distribution of heatwaves is unequal, the volatility of intensity characteristics has become more prominent over time, and the Gini coefficients of four key heatwave indictors have become larger due to increasing dryness. Although heatwaves occur more frequently in drylands, there is greater cumulative heat in humid areas, resulting in a higher heatwave risk in those areas. The global heatwave risk over the past three decades (1991–2020) has increased nearly five-fold compared to the early 20th century (1901–1930). Furthermore, GeoDetector analysis indicates that the Palmer drought severity index (PDSI) and downward surface shortwave radiation (Srad) contributing the most in drylands and humid areas (0.29 and 0.41, respectively). The contribution of relative humidity (RH), wind speed (WS), soil moisture (SM), and the normalized difference vegetation index (NDVI) is also significant in humid areas, but is much smaller in drylands. Composite analysis shows that the years with anomalously high heatwave risk correspond to positive anomalies of 500hPa geopotential height and surface pressure. The inhibition of cloud formation due to sinking air and the resulting increase in temperature in the atmosphere may be increasing the risk of heatwave occurrence. This study emphasizes the urgent need to address worsening climate change impacts.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.