{"title":"评估低比率有孔虫元素分析的精度和准确性","authors":"Wanyi Lu, Weifu Guo, Delia W. Oppo","doi":"10.1029/2024GC011560","DOIUrl":null,"url":null,"abstract":"<p>The minor and trace element compositions of biogenic carbonates such as foraminifera are important tools in paleoceanography research. However, most studies have focused primarily on samples with element to calcium (El/Ca) ratios higher than the El/Ca range often found in benthic foraminifera. Here, we systematically assess the precision and accuracy of foraminifera elemental analysis across a wide range of El/Ca especially at relatively low ratios, using a method on a Thermo Scientific iCAP Qc quadrupole Inductively Coupled Plasma Mass Spectrometer (ICP-MS). We focus on two benthic foraminifera species, <i>Hoeglundina elegans</i> and <i>Cibicidoides pachyderma</i>, and prepared a suite of solution standards based on their typical El/Ca ranges to correct for signal drift and matrix effects during ICP-MS analysis and to determine analytical precision. We observe comparable precisions with published studies at high El/Ca, and higher relative standard deviations for each element at lower El/Ca, as expected from counting statistics. The overall long-term analytical precision (2<i>σ</i>) of the <i>H. elegans</i>-like consistency standard solutions was 6.5%, 4.6%, 5.0%, for Li/Ca, Mg/Ca, Mg/Li, and 6.4%, 10.0%, 4.2% for B/Ca, Cd/Ca, Sr/Ca. The precision for <i>H. elegans</i>-like Mg/Li is equivalent to a temperature uncertainty of 0.5–1.1°C. Measurement precisions were also assessed based on three international standards (one solution and two powder standards) and replicate measurements of <i>H. elegans</i> and <i>C. pachyderma</i> samples. We provide file templates and program scripts that can be used to design calibration and consistency standards, prepare run sequences, and convert the raw ICP-MS data into molar ratios.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011560","citationCount":"0","resultStr":"{\"title\":\"Assessing the Precision and Accuracy of Foraminifera Elemental Analysis at Low Ratios\",\"authors\":\"Wanyi Lu, Weifu Guo, Delia W. Oppo\",\"doi\":\"10.1029/2024GC011560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The minor and trace element compositions of biogenic carbonates such as foraminifera are important tools in paleoceanography research. However, most studies have focused primarily on samples with element to calcium (El/Ca) ratios higher than the El/Ca range often found in benthic foraminifera. Here, we systematically assess the precision and accuracy of foraminifera elemental analysis across a wide range of El/Ca especially at relatively low ratios, using a method on a Thermo Scientific iCAP Qc quadrupole Inductively Coupled Plasma Mass Spectrometer (ICP-MS). We focus on two benthic foraminifera species, <i>Hoeglundina elegans</i> and <i>Cibicidoides pachyderma</i>, and prepared a suite of solution standards based on their typical El/Ca ranges to correct for signal drift and matrix effects during ICP-MS analysis and to determine analytical precision. We observe comparable precisions with published studies at high El/Ca, and higher relative standard deviations for each element at lower El/Ca, as expected from counting statistics. The overall long-term analytical precision (2<i>σ</i>) of the <i>H. elegans</i>-like consistency standard solutions was 6.5%, 4.6%, 5.0%, for Li/Ca, Mg/Ca, Mg/Li, and 6.4%, 10.0%, 4.2% for B/Ca, Cd/Ca, Sr/Ca. The precision for <i>H. elegans</i>-like Mg/Li is equivalent to a temperature uncertainty of 0.5–1.1°C. Measurement precisions were also assessed based on three international standards (one solution and two powder standards) and replicate measurements of <i>H. elegans</i> and <i>C. pachyderma</i> samples. We provide file templates and program scripts that can be used to design calibration and consistency standards, prepare run sequences, and convert the raw ICP-MS data into molar ratios.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"25 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011560\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011560\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011560","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Assessing the Precision and Accuracy of Foraminifera Elemental Analysis at Low Ratios
The minor and trace element compositions of biogenic carbonates such as foraminifera are important tools in paleoceanography research. However, most studies have focused primarily on samples with element to calcium (El/Ca) ratios higher than the El/Ca range often found in benthic foraminifera. Here, we systematically assess the precision and accuracy of foraminifera elemental analysis across a wide range of El/Ca especially at relatively low ratios, using a method on a Thermo Scientific iCAP Qc quadrupole Inductively Coupled Plasma Mass Spectrometer (ICP-MS). We focus on two benthic foraminifera species, Hoeglundina elegans and Cibicidoides pachyderma, and prepared a suite of solution standards based on their typical El/Ca ranges to correct for signal drift and matrix effects during ICP-MS analysis and to determine analytical precision. We observe comparable precisions with published studies at high El/Ca, and higher relative standard deviations for each element at lower El/Ca, as expected from counting statistics. The overall long-term analytical precision (2σ) of the H. elegans-like consistency standard solutions was 6.5%, 4.6%, 5.0%, for Li/Ca, Mg/Ca, Mg/Li, and 6.4%, 10.0%, 4.2% for B/Ca, Cd/Ca, Sr/Ca. The precision for H. elegans-like Mg/Li is equivalent to a temperature uncertainty of 0.5–1.1°C. Measurement precisions were also assessed based on three international standards (one solution and two powder standards) and replicate measurements of H. elegans and C. pachyderma samples. We provide file templates and program scripts that can be used to design calibration and consistency standards, prepare run sequences, and convert the raw ICP-MS data into molar ratios.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.