S. P. K. Pillutla, A. Peketi, A. Mazumdar, Mohd. Sadique, K. Sivan, Anjali Zatale, S. Mishra, Swati Verma
{"title":"孟加拉湾克里希纳-戈达瓦里(K-G)盆地外甲烷渗漏点自生碳酸盐沉积的生物地球化学重建","authors":"S. P. K. Pillutla, A. Peketi, A. Mazumdar, Mohd. Sadique, K. Sivan, Anjali Zatale, S. Mishra, Swati Verma","doi":"10.1029/2024GC011801","DOIUrl":null,"url":null,"abstract":"<p>Active and relic marine methane-seep sites are widely distributed globally and are distinguished by distinctive geology, biogeochemistry, and ecosystems. The discovery of methane-seep sites in the Krishna-Godavari (K-G) basin has created exciting new opportunities for methane-seep research in the Bay of Bengal. In this study, we document the occurrence of authigenic carbonates, including micro-crystalline aragonite crust (arg-crusts) admixed with chemosynthetic shells and high-magnesium carbonate tubular structures (HMC-tube), from the methane-seep site SSD-045/4 in the K-G basin. The δ<sup>13</sup>C values of HMC-tubes (−54.5 to −46.2‰) and arg-crusts (−57.6 to −34.8‰) indicate biogenic methane as the likely carbon source. Enhanced porewater alkalinity driving carbonate precipitation may be attributed to microbial-mediated SO₄<sup>2−</sup>-AOM processes. Additionally, δ<sup>13</sup>C values (−35.2 ± 8‰) of the residual organic matter within the carbonates suggest a contribution of methanotrophic bacterial biomass. The δ<sup>18</sup>O<sub>carb</sub> values of HMC and aragonite indicate methane hydrate degassing and crystallization pathways, respectively. Pelloid-filled burrows suggest the reworking of shallow HMC deposit by burrowing organisms, whereas the polyphase cementations (aragonite and HMC) within burrows indicate early and burial diagenetic pathways. The wide range in ΣLREE/ΣHREE ratios and Ce<sub>anom</sub> values in arg-crusts reflect micro-spatial variations in redox conditions, likely due to cementation occurring in both open and closed diagenetic systems. In contrast, more constrained Ce<sub>anom</sub> values and ΣLREE/ΣHREE ratios in HMC tubes suggest persistent sulfidic conditions. Overall, these findings provide insights into the pathways of carbonate formation at the K-G basin methane-seep site, highlighting the complex interplay of microbial processes, fluid dynamics, and diagenetic alterations.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011801","citationCount":"0","resultStr":"{\"title\":\"Biogeochemical Reconstruction of Authigenic Carbonate Deposits at Methane Seep Site off Krishna-Godavari (K-G) Basin, Bay of Bengal\",\"authors\":\"S. P. K. Pillutla, A. Peketi, A. Mazumdar, Mohd. Sadique, K. Sivan, Anjali Zatale, S. Mishra, Swati Verma\",\"doi\":\"10.1029/2024GC011801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Active and relic marine methane-seep sites are widely distributed globally and are distinguished by distinctive geology, biogeochemistry, and ecosystems. The discovery of methane-seep sites in the Krishna-Godavari (K-G) basin has created exciting new opportunities for methane-seep research in the Bay of Bengal. In this study, we document the occurrence of authigenic carbonates, including micro-crystalline aragonite crust (arg-crusts) admixed with chemosynthetic shells and high-magnesium carbonate tubular structures (HMC-tube), from the methane-seep site SSD-045/4 in the K-G basin. The δ<sup>13</sup>C values of HMC-tubes (−54.5 to −46.2‰) and arg-crusts (−57.6 to −34.8‰) indicate biogenic methane as the likely carbon source. Enhanced porewater alkalinity driving carbonate precipitation may be attributed to microbial-mediated SO₄<sup>2−</sup>-AOM processes. Additionally, δ<sup>13</sup>C values (−35.2 ± 8‰) of the residual organic matter within the carbonates suggest a contribution of methanotrophic bacterial biomass. The δ<sup>18</sup>O<sub>carb</sub> values of HMC and aragonite indicate methane hydrate degassing and crystallization pathways, respectively. Pelloid-filled burrows suggest the reworking of shallow HMC deposit by burrowing organisms, whereas the polyphase cementations (aragonite and HMC) within burrows indicate early and burial diagenetic pathways. The wide range in ΣLREE/ΣHREE ratios and Ce<sub>anom</sub> values in arg-crusts reflect micro-spatial variations in redox conditions, likely due to cementation occurring in both open and closed diagenetic systems. In contrast, more constrained Ce<sub>anom</sub> values and ΣLREE/ΣHREE ratios in HMC tubes suggest persistent sulfidic conditions. Overall, these findings provide insights into the pathways of carbonate formation at the K-G basin methane-seep site, highlighting the complex interplay of microbial processes, fluid dynamics, and diagenetic alterations.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"25 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011801\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011801\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011801","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Biogeochemical Reconstruction of Authigenic Carbonate Deposits at Methane Seep Site off Krishna-Godavari (K-G) Basin, Bay of Bengal
Active and relic marine methane-seep sites are widely distributed globally and are distinguished by distinctive geology, biogeochemistry, and ecosystems. The discovery of methane-seep sites in the Krishna-Godavari (K-G) basin has created exciting new opportunities for methane-seep research in the Bay of Bengal. In this study, we document the occurrence of authigenic carbonates, including micro-crystalline aragonite crust (arg-crusts) admixed with chemosynthetic shells and high-magnesium carbonate tubular structures (HMC-tube), from the methane-seep site SSD-045/4 in the K-G basin. The δ13C values of HMC-tubes (−54.5 to −46.2‰) and arg-crusts (−57.6 to −34.8‰) indicate biogenic methane as the likely carbon source. Enhanced porewater alkalinity driving carbonate precipitation may be attributed to microbial-mediated SO₄2−-AOM processes. Additionally, δ13C values (−35.2 ± 8‰) of the residual organic matter within the carbonates suggest a contribution of methanotrophic bacterial biomass. The δ18Ocarb values of HMC and aragonite indicate methane hydrate degassing and crystallization pathways, respectively. Pelloid-filled burrows suggest the reworking of shallow HMC deposit by burrowing organisms, whereas the polyphase cementations (aragonite and HMC) within burrows indicate early and burial diagenetic pathways. The wide range in ΣLREE/ΣHREE ratios and Ceanom values in arg-crusts reflect micro-spatial variations in redox conditions, likely due to cementation occurring in both open and closed diagenetic systems. In contrast, more constrained Ceanom values and ΣLREE/ΣHREE ratios in HMC tubes suggest persistent sulfidic conditions. Overall, these findings provide insights into the pathways of carbonate formation at the K-G basin methane-seep site, highlighting the complex interplay of microbial processes, fluid dynamics, and diagenetic alterations.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.