Martina Molinari , Eugenio Lo Piccolo , Raffaele Torella , Matteo D’Onorio , Nicholas Terranova , Gianfranco Caruso
{"title":"水冷回路中铁基合金腐蚀的实验启示","authors":"Martina Molinari , Eugenio Lo Piccolo , Raffaele Torella , Matteo D’Onorio , Nicholas Terranova , Gianfranco Caruso","doi":"10.1016/j.nme.2024.101786","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents experimental findings on the behavior of iron-based alloys in environmental conditions typical of nuclear fusion technology, specifically focusing on material degradation, which is a critical aspect for the water cooling system of EU DEMO breeding blankets. The experimental campaign investigates potassium hydroxide’s role as an alkalizing agent, testing various concentrations to assess its impact on corrosion resistance. Additionally, it examines how oxygen levels affect localized corrosion development, which is crucial for mitigating corrosion risks in fusion applications. Seven 1000-hour tests were conducted to determine optimal conditions for corrosion reduction. Findings include identifying an oxygen concentration threshold to prevent piping cracking on EUROFER97 specimens.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"41 ","pages":"Article 101786"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental insights on iron-based alloys corrosion in water cooled loops\",\"authors\":\"Martina Molinari , Eugenio Lo Piccolo , Raffaele Torella , Matteo D’Onorio , Nicholas Terranova , Gianfranco Caruso\",\"doi\":\"10.1016/j.nme.2024.101786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents experimental findings on the behavior of iron-based alloys in environmental conditions typical of nuclear fusion technology, specifically focusing on material degradation, which is a critical aspect for the water cooling system of EU DEMO breeding blankets. The experimental campaign investigates potassium hydroxide’s role as an alkalizing agent, testing various concentrations to assess its impact on corrosion resistance. Additionally, it examines how oxygen levels affect localized corrosion development, which is crucial for mitigating corrosion risks in fusion applications. Seven 1000-hour tests were conducted to determine optimal conditions for corrosion reduction. Findings include identifying an oxygen concentration threshold to prevent piping cracking on EUROFER97 specimens.</div></div>\",\"PeriodicalId\":56004,\"journal\":{\"name\":\"Nuclear Materials and Energy\",\"volume\":\"41 \",\"pages\":\"Article 101786\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Materials and Energy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352179124002096\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124002096","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Experimental insights on iron-based alloys corrosion in water cooled loops
This paper presents experimental findings on the behavior of iron-based alloys in environmental conditions typical of nuclear fusion technology, specifically focusing on material degradation, which is a critical aspect for the water cooling system of EU DEMO breeding blankets. The experimental campaign investigates potassium hydroxide’s role as an alkalizing agent, testing various concentrations to assess its impact on corrosion resistance. Additionally, it examines how oxygen levels affect localized corrosion development, which is crucial for mitigating corrosion risks in fusion applications. Seven 1000-hour tests were conducted to determine optimal conditions for corrosion reduction. Findings include identifying an oxygen concentration threshold to prevent piping cracking on EUROFER97 specimens.
期刊介绍:
The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.