{"title":"带套环的薄壁间隙单平面 K 型管状钢接头在支撑平衡轴向载荷作用下的 LJF","authors":"Hossein Nassiraei , Hamid Reza Chavoshi , Siamak Talatahari","doi":"10.1016/j.marstruc.2024.103713","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the efficacy of the collar plate in improving the Local Joint Flexibility (LJF) of thin-walled circular hollow section (CHS) K-joints under axial loads. Initially, a finite element model (FEM) was created and verified against data from 14 available experimental tests. Subsequently, an extensive series of 136 unreinforced and reinforced K-joints was simulated to analyze the influence of parameters such as collar plate dimensions (<em>η</em> and <em>λ</em>), brace angle (<em>θ</em>), and joint geometry (<em>β, ξ</em>, and <em>γ</em>) on the LJF factor (<em>f</em><sub>LJF</sub>) and the <em>f</em><sub>LJF</sub> ratio (<em>χ</em>). The FEMs incorporated plate-to-member contact and weld modeling. Findings indicate that the utilization of the plate reduces the <em>f</em><sub>LJF</sub> by 73 %. Additionally, it was observed that plate length significantly affects the <em>f</em><sub>LJF</sub> compared to plate thickness. While the impact of <em>γ, θ</em>, and <em>ξ</em> on <em>χ</em> is marginal, <em>β, η</em> and <em>λ</em> emerge as a noteworthy determinant of <em>χ</em>. Despite the pivotal role of <em>f</em><sub>LJF</sub> in joint behavior, there exists a gap in studies and equations specifically addressing <em>f</em><sub>LJF</sub> in collar-plate reinforced K-joints under axial loads. To address this gap, leveraging the FE results, a design equation is proposed. This equation is subsequently validated with high coefficients of determination and standards set by the UK Department of Energy.</div></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"99 ","pages":"Article 103713"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LJF of thin-walled gapped uni-planar K-type tubular steel joints with collar under brace balanced axial loads\",\"authors\":\"Hossein Nassiraei , Hamid Reza Chavoshi , Siamak Talatahari\",\"doi\":\"10.1016/j.marstruc.2024.103713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the efficacy of the collar plate in improving the Local Joint Flexibility (LJF) of thin-walled circular hollow section (CHS) K-joints under axial loads. Initially, a finite element model (FEM) was created and verified against data from 14 available experimental tests. Subsequently, an extensive series of 136 unreinforced and reinforced K-joints was simulated to analyze the influence of parameters such as collar plate dimensions (<em>η</em> and <em>λ</em>), brace angle (<em>θ</em>), and joint geometry (<em>β, ξ</em>, and <em>γ</em>) on the LJF factor (<em>f</em><sub>LJF</sub>) and the <em>f</em><sub>LJF</sub> ratio (<em>χ</em>). The FEMs incorporated plate-to-member contact and weld modeling. Findings indicate that the utilization of the plate reduces the <em>f</em><sub>LJF</sub> by 73 %. Additionally, it was observed that plate length significantly affects the <em>f</em><sub>LJF</sub> compared to plate thickness. While the impact of <em>γ, θ</em>, and <em>ξ</em> on <em>χ</em> is marginal, <em>β, η</em> and <em>λ</em> emerge as a noteworthy determinant of <em>χ</em>. Despite the pivotal role of <em>f</em><sub>LJF</sub> in joint behavior, there exists a gap in studies and equations specifically addressing <em>f</em><sub>LJF</sub> in collar-plate reinforced K-joints under axial loads. To address this gap, leveraging the FE results, a design equation is proposed. This equation is subsequently validated with high coefficients of determination and standards set by the UK Department of Energy.</div></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":\"99 \",\"pages\":\"Article 103713\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833924001412\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924001412","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
LJF of thin-walled gapped uni-planar K-type tubular steel joints with collar under brace balanced axial loads
This paper investigates the efficacy of the collar plate in improving the Local Joint Flexibility (LJF) of thin-walled circular hollow section (CHS) K-joints under axial loads. Initially, a finite element model (FEM) was created and verified against data from 14 available experimental tests. Subsequently, an extensive series of 136 unreinforced and reinforced K-joints was simulated to analyze the influence of parameters such as collar plate dimensions (η and λ), brace angle (θ), and joint geometry (β, ξ, and γ) on the LJF factor (fLJF) and the fLJF ratio (χ). The FEMs incorporated plate-to-member contact and weld modeling. Findings indicate that the utilization of the plate reduces the fLJF by 73 %. Additionally, it was observed that plate length significantly affects the fLJF compared to plate thickness. While the impact of γ, θ, and ξ on χ is marginal, β, η and λ emerge as a noteworthy determinant of χ. Despite the pivotal role of fLJF in joint behavior, there exists a gap in studies and equations specifically addressing fLJF in collar-plate reinforced K-joints under axial loads. To address this gap, leveraging the FE results, a design equation is proposed. This equation is subsequently validated with high coefficients of determination and standards set by the UK Department of Energy.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.