{"title":"胆囊收缩素表达的中间神经元介导的杏仁核基底外侧抑制性传导和可塑性调节小鼠应激诱发的焦虑样行为","authors":"Wei Fang , Xi Chen , Jufang He","doi":"10.1016/j.ynstr.2024.100680","DOIUrl":null,"url":null,"abstract":"<div><div>The basolateral amygdala (BLA) hyperactivity has been implicated in the pathophysiology of anxiety disorders. We recently found that enhancing inhibitory transmission in BLA by chemo-genetic activation of local interneurons (INs) can reduce stress-induced anxiety-like behaviors in mice. Cholecystokinin interneurons (CCK-INs) are a major part of INs in BLA. It remains unknown whether CCK-INs modulated inhibition in BLA can mediate anxiety. In the present study, we found that BLA CCK-INs project extensively to most local excitatory neurons. Activating these CCK-INs using chemo-genetics and optogenetics can both effectively suppress electrical-induced neuronal activity within the BLA. Additionally, we observed that direct and sustained activation of CCK-INs within the BLA via chemo-genetics can mitigate stress-induced anxiety-like behaviors in mice and reduce stress-induced hyperactivity within the BLA itself. Furthermore, augmenting inhibitory plasticity within the BLA through a brief, 10-min high-frequency laser stimulation (HFLS) of CCK-INs also reduce stress-induced anxiety-like behaviors in mice. Collectively, these findings underscore the pivotal role of BLA CCK-IN-mediated inhibitory transmission and plasticity in modulating anxiety.</div></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"33 ","pages":"Article 100680"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cholecystokinin-expressing interneurons mediated inhibitory transmission and plasticity in basolateral amygdala modulate stress-induced anxiety-like behaviors in mice\",\"authors\":\"Wei Fang , Xi Chen , Jufang He\",\"doi\":\"10.1016/j.ynstr.2024.100680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The basolateral amygdala (BLA) hyperactivity has been implicated in the pathophysiology of anxiety disorders. We recently found that enhancing inhibitory transmission in BLA by chemo-genetic activation of local interneurons (INs) can reduce stress-induced anxiety-like behaviors in mice. Cholecystokinin interneurons (CCK-INs) are a major part of INs in BLA. It remains unknown whether CCK-INs modulated inhibition in BLA can mediate anxiety. In the present study, we found that BLA CCK-INs project extensively to most local excitatory neurons. Activating these CCK-INs using chemo-genetics and optogenetics can both effectively suppress electrical-induced neuronal activity within the BLA. Additionally, we observed that direct and sustained activation of CCK-INs within the BLA via chemo-genetics can mitigate stress-induced anxiety-like behaviors in mice and reduce stress-induced hyperactivity within the BLA itself. Furthermore, augmenting inhibitory plasticity within the BLA through a brief, 10-min high-frequency laser stimulation (HFLS) of CCK-INs also reduce stress-induced anxiety-like behaviors in mice. Collectively, these findings underscore the pivotal role of BLA CCK-IN-mediated inhibitory transmission and plasticity in modulating anxiety.</div></div>\",\"PeriodicalId\":19125,\"journal\":{\"name\":\"Neurobiology of Stress\",\"volume\":\"33 \",\"pages\":\"Article 100680\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Stress\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352289524000766\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289524000766","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
杏仁基底外侧(BLA)的过度活跃与焦虑症的病理生理学有关。我们最近发现,通过化学基因激活局部中间神经元(INs)来增强杏仁基底外侧的抑制性传导,可以减少小鼠由压力诱发的焦虑样行为。胆囊收缩素中间神经元(CCK-INs)是BLA中INs的主要组成部分。CCK-INs调节BLA中的抑制作用是否能介导焦虑仍是一个未知数。在本研究中,我们发现 BLA CCK-INs 广泛投射到大多数局部兴奋性神经元。利用化学遗传学和光遗传学激活这些 CCK-INs 都能有效抑制 BLA 内电诱导的神经元活动。此外,我们还观察到,通过化学遗传学直接、持续地激活 BLA 内的 CCK-INs 可以减轻应激诱导的小鼠焦虑样行为,并降低应激诱导的 BLA 自身的过度活跃性。此外,通过对CCK-INs进行10分钟的短暂高频激光刺激(HFLS)来增强BLA内的抑制可塑性,也能减少小鼠应激诱发的焦虑样行为。总之,这些发现强调了BLA CCK-IN介导的抑制性传递和可塑性在调节焦虑中的关键作用。
Cholecystokinin-expressing interneurons mediated inhibitory transmission and plasticity in basolateral amygdala modulate stress-induced anxiety-like behaviors in mice
The basolateral amygdala (BLA) hyperactivity has been implicated in the pathophysiology of anxiety disorders. We recently found that enhancing inhibitory transmission in BLA by chemo-genetic activation of local interneurons (INs) can reduce stress-induced anxiety-like behaviors in mice. Cholecystokinin interneurons (CCK-INs) are a major part of INs in BLA. It remains unknown whether CCK-INs modulated inhibition in BLA can mediate anxiety. In the present study, we found that BLA CCK-INs project extensively to most local excitatory neurons. Activating these CCK-INs using chemo-genetics and optogenetics can both effectively suppress electrical-induced neuronal activity within the BLA. Additionally, we observed that direct and sustained activation of CCK-INs within the BLA via chemo-genetics can mitigate stress-induced anxiety-like behaviors in mice and reduce stress-induced hyperactivity within the BLA itself. Furthermore, augmenting inhibitory plasticity within the BLA through a brief, 10-min high-frequency laser stimulation (HFLS) of CCK-INs also reduce stress-induced anxiety-like behaviors in mice. Collectively, these findings underscore the pivotal role of BLA CCK-IN-mediated inhibitory transmission and plasticity in modulating anxiety.
期刊介绍:
Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal.
Basic, translational and clinical research on the following topics as they relate to stress will be covered:
Molecular substrates and cell signaling,
Genetics and epigenetics,
Stress circuitry,
Structural and physiological plasticity,
Developmental Aspects,
Laboratory models of stress,
Neuroinflammation and pathology,
Memory and Cognition,
Motivational Processes,
Fear and Anxiety,
Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse),
Neuropsychopharmacology.