关于铅铋共晶(LBE)冷却 SPARK-NC 堆芯燃料中放射性同位素演变的研究

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Annals of Nuclear Energy Pub Date : 2024-10-24 DOI:10.1016/j.anucene.2024.110998
Sohail Ahmad Raza, Muhammad Hashim, Liangzhi Cao, Xianan Du, Longwen Jiang
{"title":"关于铅铋共晶(LBE)冷却 SPARK-NC 堆芯燃料中放射性同位素演变的研究","authors":"Sohail Ahmad Raza,&nbsp;Muhammad Hashim,&nbsp;Liangzhi Cao,&nbsp;Xianan Du,&nbsp;Longwen Jiang","doi":"10.1016/j.anucene.2024.110998","DOIUrl":null,"url":null,"abstract":"<div><div>SPARK-NC, a 10 MW(e) lead–bismuth eutectic (LBE) cooled fast reactor design, exhibits promising characteristics like inherent gamma shielding, natural circulation, and a high boiling point. Following detailed neutronic studies, a thorough investigation of nuclear safety necessitates a detailed analysis of the core radionuclide inventory. This information is particularly crucial for source term calculations, which play a vital role in assessing the potential radiological consequences. This study establishes the life-cycle inventory of SPARK-NC using two independent computational systems: ORIGEN2.2 and NECP-SARAX. ORIGEN2.2, equipped with a reactor-specific library generated by NECP-MCX, is used for average whole-core inventory analysis. NECP-SARAX, on the other hand, explicitly considers core heterogeneity in terms of enrichment, specific power, and burn-up. This work presents the radionuclide inventories and the relative calculation differences observed between the codes. Actinides like uranium and curium display minimal code dependence, while plutonium isotopes exhibit a maximum relative difference of 8 %. Fission products generally agree within 5 %, except for I-131, which shows a discrepancy of around 10 %. The activity of I-131 and Cs-137 are estimated to be approximately 1 × 10<sup>16</sup> Bq and 3 × 10<sup>15</sup> Bq, respectively. Additionally, the photon source strength is 10<sup>17</sup>/s at 1 MeV, dropping to 10<sup>16</sup>/s below 6 MeV. Fission products and actinides contribute a decay heat of 0.65 MW. Assembly-wise analysis reveals a direct proportionality between radionuclide inventory and peaking factor, with the average assembly inventory being roughly 25 % lower than the peak assembly inventory. Rare earth elements (Ce, Sm, Pm, Pr, Nd, La, Y) exhibit a maximum mass of approximately 8.5 kg with a 3 % relative difference between the codes. Conversely, halogens (I, Br) have a minimum mass of around 0.2 kg with a 13 % relative difference. These findings, alongside the quantification of radionuclides, provide valuable insights into the code selection for future analyses of SPARK-NC and similar reactor systems.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on radioisotopes evolution in the fuel of Lead-Bismuth eutectic (LBE) cooled SPARK-NC core\",\"authors\":\"Sohail Ahmad Raza,&nbsp;Muhammad Hashim,&nbsp;Liangzhi Cao,&nbsp;Xianan Du,&nbsp;Longwen Jiang\",\"doi\":\"10.1016/j.anucene.2024.110998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>SPARK-NC, a 10 MW(e) lead–bismuth eutectic (LBE) cooled fast reactor design, exhibits promising characteristics like inherent gamma shielding, natural circulation, and a high boiling point. Following detailed neutronic studies, a thorough investigation of nuclear safety necessitates a detailed analysis of the core radionuclide inventory. This information is particularly crucial for source term calculations, which play a vital role in assessing the potential radiological consequences. This study establishes the life-cycle inventory of SPARK-NC using two independent computational systems: ORIGEN2.2 and NECP-SARAX. ORIGEN2.2, equipped with a reactor-specific library generated by NECP-MCX, is used for average whole-core inventory analysis. NECP-SARAX, on the other hand, explicitly considers core heterogeneity in terms of enrichment, specific power, and burn-up. This work presents the radionuclide inventories and the relative calculation differences observed between the codes. Actinides like uranium and curium display minimal code dependence, while plutonium isotopes exhibit a maximum relative difference of 8 %. Fission products generally agree within 5 %, except for I-131, which shows a discrepancy of around 10 %. The activity of I-131 and Cs-137 are estimated to be approximately 1 × 10<sup>16</sup> Bq and 3 × 10<sup>15</sup> Bq, respectively. Additionally, the photon source strength is 10<sup>17</sup>/s at 1 MeV, dropping to 10<sup>16</sup>/s below 6 MeV. Fission products and actinides contribute a decay heat of 0.65 MW. Assembly-wise analysis reveals a direct proportionality between radionuclide inventory and peaking factor, with the average assembly inventory being roughly 25 % lower than the peak assembly inventory. Rare earth elements (Ce, Sm, Pm, Pr, Nd, La, Y) exhibit a maximum mass of approximately 8.5 kg with a 3 % relative difference between the codes. Conversely, halogens (I, Br) have a minimum mass of around 0.2 kg with a 13 % relative difference. These findings, alongside the quantification of radionuclides, provide valuable insights into the code selection for future analyses of SPARK-NC and similar reactor systems.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924006613\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924006613","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

SPARK-NC 是一种 10 兆瓦(e)铅铋共晶(LBE)冷却快堆设计,具有固有伽马屏蔽、自然循环和高沸点等良好特性。在进行详细的中子研究之后,要对核安全进行彻底调查,就必须对堆芯放射性核素清单进行详细分析。这些信息对于源项计算尤为重要,因为源项计算在评估潜在放射性后果方面起着至关重要的作用。本研究利用两个独立的计算系统建立了 SPARK-NC 的生命周期清单:ORIGEN2.2 和 NECP-SARAX。ORIGEN2.2 配备了由 NECP-MCX 生成的特定反应堆库,用于平均全堆芯清单分析。而 NECP-SARAX 则明确考虑了堆芯在浓缩、比功率和烧损方面的异质性。这项工作介绍了放射性核素清单以及在两种代码之间观察到的相对计算差异。铀和锔等锕系元素显示出最小的代码依赖性,而钚同位素显示出最大 8% 的相对差异。裂变产物的差异一般在 5%以内,但 I-131 除外,其差异约为 10%。据估计,I-131 和 Cs-137 的放射性活度分别约为 1 × 1016 Bq 和 3 × 1015 Bq。此外,光子源强度在 1 兆电子伏时为 1017/秒,在 6 兆电子伏以下降至 1016/秒。裂变产物和锕系元素产生的衰变热为 0.65 兆瓦。装配分析表明,放射性核素存量与峰值系数成正比,平均装配存量比峰值装配存量低大约 25%。稀土元素(Ce、Sm、Pm、Pr、Nd、La、Y)的最大质量约为 8.5 千克,各代码之间的相对差异为 3%。相反,卤素(I、Br)的最小质量约为 0.2 千克,相对差异为 13%。这些发现以及放射性核素的量化,为今后分析 SPARK-NC 和类似反应堆系统的代码选择提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on radioisotopes evolution in the fuel of Lead-Bismuth eutectic (LBE) cooled SPARK-NC core
SPARK-NC, a 10 MW(e) lead–bismuth eutectic (LBE) cooled fast reactor design, exhibits promising characteristics like inherent gamma shielding, natural circulation, and a high boiling point. Following detailed neutronic studies, a thorough investigation of nuclear safety necessitates a detailed analysis of the core radionuclide inventory. This information is particularly crucial for source term calculations, which play a vital role in assessing the potential radiological consequences. This study establishes the life-cycle inventory of SPARK-NC using two independent computational systems: ORIGEN2.2 and NECP-SARAX. ORIGEN2.2, equipped with a reactor-specific library generated by NECP-MCX, is used for average whole-core inventory analysis. NECP-SARAX, on the other hand, explicitly considers core heterogeneity in terms of enrichment, specific power, and burn-up. This work presents the radionuclide inventories and the relative calculation differences observed between the codes. Actinides like uranium and curium display minimal code dependence, while plutonium isotopes exhibit a maximum relative difference of 8 %. Fission products generally agree within 5 %, except for I-131, which shows a discrepancy of around 10 %. The activity of I-131 and Cs-137 are estimated to be approximately 1 × 1016 Bq and 3 × 1015 Bq, respectively. Additionally, the photon source strength is 1017/s at 1 MeV, dropping to 1016/s below 6 MeV. Fission products and actinides contribute a decay heat of 0.65 MW. Assembly-wise analysis reveals a direct proportionality between radionuclide inventory and peaking factor, with the average assembly inventory being roughly 25 % lower than the peak assembly inventory. Rare earth elements (Ce, Sm, Pm, Pr, Nd, La, Y) exhibit a maximum mass of approximately 8.5 kg with a 3 % relative difference between the codes. Conversely, halogens (I, Br) have a minimum mass of around 0.2 kg with a 13 % relative difference. These findings, alongside the quantification of radionuclides, provide valuable insights into the code selection for future analyses of SPARK-NC and similar reactor systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
期刊最新文献
The nucleation characteristics of geyser boiling in sodium heat pipes European research reactor strategy derived in the scope of the towards optimized use of research reactors (TOURR) project Analysis of internal flow excitation characteristics of reactor coolant pump based on DMD On the Neutron Kinetics during a Promptcritical Accident in a Heavy Liquid Metal Fast Reactor and the Importance of Low-Energy Neutrons Machine-learned force fields for thermal neutron scattering law evaluations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1