A. Hudson , J.G. Murnane , T. O'Dwyer , R. Courtney
{"title":"湿地基质中有机物对脱钒的影响:间歇式和柱式研究","authors":"A. Hudson , J.G. Murnane , T. O'Dwyer , R. Courtney","doi":"10.1016/j.jwpe.2024.106359","DOIUrl":null,"url":null,"abstract":"<div><div>Long term Vanadium (V) releases from alkaline wastewaters and associated risks to aquatic environments has highlighted the need to further develop the potential of passive treatment systems, including constructed wetlands (CWs). However, understanding the role and composition of CW substrate, including organic matter content, for V removal is limited.</div><div>This work used batch and column studies to measure V removal and retention by adsorption in mixed compost and soil substrates, at both alkaline and neutral pH's (11 and 6). Batch studies carried out on (i) unamended topsoil, (ii) topsoil with 10 % compost, and (iii) topsoil with 20 % compost, showed that maximum V uptake was highest in the 20 % compost mix (1.47 mg/g) compared to unamended soil (0.76 mg/g) after 24 h contact time.</div><div>A column leaching study using the 20 % compost to topsoil soil mix was batch loaded twice weekly with 50 mL of 100 mg V/ L at pH 6 and pH 11. After 18-weeks, the columns had retained 97 % and 87 % V for the pH 6 and pH 11 solutions respectively. Highest accumulated V was in the top 0–5 cm for the pH 6 (44.8 mg) and top 5-10 cm for pH 11 (56.4 mg) columns, reducing significantly with depth. Soluble V accounted for 46 % of the total in the pH 11 treatment, and 39 % in the pH 6 treatment. Results of this applied study imply a potential means of improving V retention in CW substrate by compost inclusion. Further investigations are needed to assess performance containing multiple trace elements.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"68 ","pages":"Article 106359"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of organic matter in wetland substrate on vanadium removal: A batch and column study\",\"authors\":\"A. Hudson , J.G. Murnane , T. O'Dwyer , R. Courtney\",\"doi\":\"10.1016/j.jwpe.2024.106359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Long term Vanadium (V) releases from alkaline wastewaters and associated risks to aquatic environments has highlighted the need to further develop the potential of passive treatment systems, including constructed wetlands (CWs). However, understanding the role and composition of CW substrate, including organic matter content, for V removal is limited.</div><div>This work used batch and column studies to measure V removal and retention by adsorption in mixed compost and soil substrates, at both alkaline and neutral pH's (11 and 6). Batch studies carried out on (i) unamended topsoil, (ii) topsoil with 10 % compost, and (iii) topsoil with 20 % compost, showed that maximum V uptake was highest in the 20 % compost mix (1.47 mg/g) compared to unamended soil (0.76 mg/g) after 24 h contact time.</div><div>A column leaching study using the 20 % compost to topsoil soil mix was batch loaded twice weekly with 50 mL of 100 mg V/ L at pH 6 and pH 11. After 18-weeks, the columns had retained 97 % and 87 % V for the pH 6 and pH 11 solutions respectively. Highest accumulated V was in the top 0–5 cm for the pH 6 (44.8 mg) and top 5-10 cm for pH 11 (56.4 mg) columns, reducing significantly with depth. Soluble V accounted for 46 % of the total in the pH 11 treatment, and 39 % in the pH 6 treatment. Results of this applied study imply a potential means of improving V retention in CW substrate by compost inclusion. Further investigations are needed to assess performance containing multiple trace elements.</div></div>\",\"PeriodicalId\":17528,\"journal\":{\"name\":\"Journal of water process engineering\",\"volume\":\"68 \",\"pages\":\"Article 106359\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of water process engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214714424015915\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714424015915","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Influence of organic matter in wetland substrate on vanadium removal: A batch and column study
Long term Vanadium (V) releases from alkaline wastewaters and associated risks to aquatic environments has highlighted the need to further develop the potential of passive treatment systems, including constructed wetlands (CWs). However, understanding the role and composition of CW substrate, including organic matter content, for V removal is limited.
This work used batch and column studies to measure V removal and retention by adsorption in mixed compost and soil substrates, at both alkaline and neutral pH's (11 and 6). Batch studies carried out on (i) unamended topsoil, (ii) topsoil with 10 % compost, and (iii) topsoil with 20 % compost, showed that maximum V uptake was highest in the 20 % compost mix (1.47 mg/g) compared to unamended soil (0.76 mg/g) after 24 h contact time.
A column leaching study using the 20 % compost to topsoil soil mix was batch loaded twice weekly with 50 mL of 100 mg V/ L at pH 6 and pH 11. After 18-weeks, the columns had retained 97 % and 87 % V for the pH 6 and pH 11 solutions respectively. Highest accumulated V was in the top 0–5 cm for the pH 6 (44.8 mg) and top 5-10 cm for pH 11 (56.4 mg) columns, reducing significantly with depth. Soluble V accounted for 46 % of the total in the pH 11 treatment, and 39 % in the pH 6 treatment. Results of this applied study imply a potential means of improving V retention in CW substrate by compost inclusion. Further investigations are needed to assess performance containing multiple trace elements.
期刊介绍:
The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies