通过控制合成参数提高透辉石型 Li0.3La0.57TiO3 陶瓷电解质的电化学性能

IF 5.8 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of The European Ceramic Society Pub Date : 2024-10-05 DOI:10.1016/j.jeurceramsoc.2024.116972
Maycol F. Mena , Ferley A. Vásquez , Oceane Florentin , Jadra Mosa , Mario Aparicio , Jorge A. Calderón , Nataly Carolina Rosero-Navarro
{"title":"通过控制合成参数提高透辉石型 Li0.3La0.57TiO3 陶瓷电解质的电化学性能","authors":"Maycol F. Mena ,&nbsp;Ferley A. Vásquez ,&nbsp;Oceane Florentin ,&nbsp;Jadra Mosa ,&nbsp;Mario Aparicio ,&nbsp;Jorge A. Calderón ,&nbsp;Nataly Carolina Rosero-Navarro","doi":"10.1016/j.jeurceramsoc.2024.116972","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the enhancement of the electrochemical performance of perovskite-type Li<sub>0.3</sub>La<sub>0.57</sub>TiO<sub>3</sub> (LLTO) solid electrolytes through the optimization of synthesis parameters of a sol-gel process. The primary focus lies in examining the impact of calcination temperature on the structural, morphological, and electrochemical properties of LLTO. Our findings reveal that controlling the calcination temperature significantly influences the grain boundary resistance and overall ionic conductivity. The optimal calcination temperature was identified to be 800 °C, yielding a remarkable improvement in ionic conductivity at grain boundaries (0.88 mS/cm), and total ionic conductivity (0.54 mS/cm), at 30 °C. This enhancement is attributed to the refined microstructure, increased density, and reduced porosity, which collectively facilitate lithium-ion diffusion. These advancements in LLTO electrolytes present promising implications for their application in all-solid-state lithium-ion batteries, offering a safer and more efficient alternative to conventional liquid electrolyte systems.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 116972"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical performance enhancement of perovskite-type Li0.3La0.57TiO3 ceramic electrolyte by controlling synthesis parameters\",\"authors\":\"Maycol F. Mena ,&nbsp;Ferley A. Vásquez ,&nbsp;Oceane Florentin ,&nbsp;Jadra Mosa ,&nbsp;Mario Aparicio ,&nbsp;Jorge A. Calderón ,&nbsp;Nataly Carolina Rosero-Navarro\",\"doi\":\"10.1016/j.jeurceramsoc.2024.116972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the enhancement of the electrochemical performance of perovskite-type Li<sub>0.3</sub>La<sub>0.57</sub>TiO<sub>3</sub> (LLTO) solid electrolytes through the optimization of synthesis parameters of a sol-gel process. The primary focus lies in examining the impact of calcination temperature on the structural, morphological, and electrochemical properties of LLTO. Our findings reveal that controlling the calcination temperature significantly influences the grain boundary resistance and overall ionic conductivity. The optimal calcination temperature was identified to be 800 °C, yielding a remarkable improvement in ionic conductivity at grain boundaries (0.88 mS/cm), and total ionic conductivity (0.54 mS/cm), at 30 °C. This enhancement is attributed to the refined microstructure, increased density, and reduced porosity, which collectively facilitate lithium-ion diffusion. These advancements in LLTO electrolytes present promising implications for their application in all-solid-state lithium-ion batteries, offering a safer and more efficient alternative to conventional liquid electrolyte systems.</div></div>\",\"PeriodicalId\":17408,\"journal\":{\"name\":\"Journal of The European Ceramic Society\",\"volume\":\"45 3\",\"pages\":\"Article 116972\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The European Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955221924008458\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924008458","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了通过优化溶胶-凝胶工艺的合成参数来提高透辉石型 Li0.3La0.57TiO3(LLTO)固体电解质的电化学性能。主要重点是研究煅烧温度对 LLTO 的结构、形态和电化学性能的影响。我们的研究结果表明,控制煅烧温度可显著影响晶界电阻和整体离子导电性。最佳煅烧温度为 800 ℃,在 30 ℃ 时,晶界离子电导率(0.88 mS/cm)和总离子电导率(0.54 mS/cm)显著提高。这种提高归功于微观结构的细化、密度的提高和孔隙率的降低,它们共同促进了锂离子的扩散。LLTO 电解质的这些进步为其在全固态锂离子电池中的应用带来了希望,为传统液态电解质系统提供了更安全、更高效的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical performance enhancement of perovskite-type Li0.3La0.57TiO3 ceramic electrolyte by controlling synthesis parameters
This study investigates the enhancement of the electrochemical performance of perovskite-type Li0.3La0.57TiO3 (LLTO) solid electrolytes through the optimization of synthesis parameters of a sol-gel process. The primary focus lies in examining the impact of calcination temperature on the structural, morphological, and electrochemical properties of LLTO. Our findings reveal that controlling the calcination temperature significantly influences the grain boundary resistance and overall ionic conductivity. The optimal calcination temperature was identified to be 800 °C, yielding a remarkable improvement in ionic conductivity at grain boundaries (0.88 mS/cm), and total ionic conductivity (0.54 mS/cm), at 30 °C. This enhancement is attributed to the refined microstructure, increased density, and reduced porosity, which collectively facilitate lithium-ion diffusion. These advancements in LLTO electrolytes present promising implications for their application in all-solid-state lithium-ion batteries, offering a safer and more efficient alternative to conventional liquid electrolyte systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
期刊最新文献
Ceramic repair agents for damaged CMC: Assessing repair performance Effects of La2O3 on sintering of MgO-CaO ceramics: Molecular dynamic simulation and experiments Phase evolution and high-temperature stability of HfSiO4 bond coat for ultra-high temperature environmental barrier coatings Robust corrosion resistance of Yb4Hf3O12 coating against CMAS attack at 1300–1500 ℃ Enhancement of piezoelectric properties and temperature stability of high-Curie temperature CaBi2Nb2O9 ceramics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1