通过约束优化实现社交机器人导航:对模拟和真实世界中基于不确定性的目标和约束条件的综合研究

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Robotics and Autonomous Systems Pub Date : 2024-10-11 DOI:10.1016/j.robot.2024.104830
Timur Akhtyamov , Aleksandr Kashirin , Aleksey Postnikov , Ivan Sosin , Gonzalo Ferrer
{"title":"通过约束优化实现社交机器人导航:对模拟和真实世界中基于不确定性的目标和约束条件的综合研究","authors":"Timur Akhtyamov ,&nbsp;Aleksandr Kashirin ,&nbsp;Aleksey Postnikov ,&nbsp;Ivan Sosin ,&nbsp;Gonzalo Ferrer","doi":"10.1016/j.robot.2024.104830","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides an empirical evaluation, in both simulation and real scenarios, of the social navigation problem when considering human motion prediction and its stochastic effects. To this end, we study several different optimization criteria and constraints related to the uncertainty of predicting pedestrians’ motion, embedded into the Model Predictive Control (MPC) scheme.</div><div>The main research question of this work is the following: what are the most important uncertainty-based criteria for the social MPC both in simulated and real-world environments? In order to achieve a solid answer to this question, we extend the results previously obtained from our work (Akhtyamov et al., 2023) in the simulated environments and provide a real-world setting that mimics similar conditions, for a fair comparison of the qualitative and quantitative results.</div><div>The main conclusions supported by both of the evaluation environments are the advantages of using <em>adaptive constraints</em> as a clear undisputed enhancement and the problems raised when considering uncertainty-aware criteria. We hope this paper is of interest to the community for deciding and designing uncertainty-aware approaches for social robot navigation.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"183 ","pages":"Article 104830"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social robot navigation through constrained optimization: A comprehensive study of uncertainty-based objectives and constraints in the simulated and real world\",\"authors\":\"Timur Akhtyamov ,&nbsp;Aleksandr Kashirin ,&nbsp;Aleksey Postnikov ,&nbsp;Ivan Sosin ,&nbsp;Gonzalo Ferrer\",\"doi\":\"10.1016/j.robot.2024.104830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper provides an empirical evaluation, in both simulation and real scenarios, of the social navigation problem when considering human motion prediction and its stochastic effects. To this end, we study several different optimization criteria and constraints related to the uncertainty of predicting pedestrians’ motion, embedded into the Model Predictive Control (MPC) scheme.</div><div>The main research question of this work is the following: what are the most important uncertainty-based criteria for the social MPC both in simulated and real-world environments? In order to achieve a solid answer to this question, we extend the results previously obtained from our work (Akhtyamov et al., 2023) in the simulated environments and provide a real-world setting that mimics similar conditions, for a fair comparison of the qualitative and quantitative results.</div><div>The main conclusions supported by both of the evaluation environments are the advantages of using <em>adaptive constraints</em> as a clear undisputed enhancement and the problems raised when considering uncertainty-aware criteria. We hope this paper is of interest to the community for deciding and designing uncertainty-aware approaches for social robot navigation.</div></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"183 \",\"pages\":\"Article 104830\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024002148\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024002148","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过模拟和真实场景,对考虑到人类运动预测及其随机影响的社会导航问题进行了实证评估。为此,我们研究了与行人运动预测不确定性相关的几种不同的优化标准和约束条件,并将其嵌入到模型预测控制(MPC)方案中。这项工作的主要研究问题如下:在模拟和真实环境中,社会 MPC 最重要的基于不确定性的标准是什么?为了获得这一问题的可靠答案,我们扩展了之前在模拟环境中获得的结果(Akhtyamov 等人,2023 年),并提供了模拟类似条件的真实世界环境,以便对定性和定量结果进行公平比较。两个评估环境所支持的主要结论是,使用自适应约束作为明确的无可争议的增强功能具有优势,而在考虑不确定性感知标准时则会出现问题。我们希望这篇论文对社会各界决定和设计社会机器人导航的不确定性感知方法有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Social robot navigation through constrained optimization: A comprehensive study of uncertainty-based objectives and constraints in the simulated and real world
This paper provides an empirical evaluation, in both simulation and real scenarios, of the social navigation problem when considering human motion prediction and its stochastic effects. To this end, we study several different optimization criteria and constraints related to the uncertainty of predicting pedestrians’ motion, embedded into the Model Predictive Control (MPC) scheme.
The main research question of this work is the following: what are the most important uncertainty-based criteria for the social MPC both in simulated and real-world environments? In order to achieve a solid answer to this question, we extend the results previously obtained from our work (Akhtyamov et al., 2023) in the simulated environments and provide a real-world setting that mimics similar conditions, for a fair comparison of the qualitative and quantitative results.
The main conclusions supported by both of the evaluation environments are the advantages of using adaptive constraints as a clear undisputed enhancement and the problems raised when considering uncertainty-aware criteria. We hope this paper is of interest to the community for deciding and designing uncertainty-aware approaches for social robot navigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
期刊最新文献
MOVRO2: Loosely coupled monocular visual radar odometry using factor graph optimization Learning temporal maps of dynamics for mobile robots Towards zero-shot cross-agent transfer learning via latent-space universal notice network Delta- and Kalman-filter designs for multi-sensor pose estimation on spherical mobile mapping systems Safe tracking control for free-flying space robots via control barrier functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1