Mercedes Guerrero-Brotons , Rosa Gómez , José Álvarez-Rogel , Miguel Ángel Sánchez-Monedero , María Isabel Arce
{"title":"叶片沥滤液的添加对地下水流构建湿地反硝化的影响取决于床基类型","authors":"Mercedes Guerrero-Brotons , Rosa Gómez , José Álvarez-Rogel , Miguel Ángel Sánchez-Monedero , María Isabel Arce","doi":"10.1016/j.jwpe.2024.106360","DOIUrl":null,"url":null,"abstract":"<div><div>In constructed wetlands (CWs), bed substrate and leaf leachates from vegetation may correct the low C/N ratio that constrains heterotrophic denitrification and nitrate removal from irrigated agricultural drainage water. However, the interactive effects of bed substrate type and leaf leachates on denitrification are still unknown. By focusing on a CWs pilot plant, we designed a laboratory experiment to evaluate i) wether denitrification potential rates varied among bed substrates: calcareous gravel (a conventional substrate), gravel+soil from a natural wetland (silty loam Solonchak, 1.5 % of organic C) and gravel+biochar from pyrolyzed ornamental plants (75 % of organic C); and ii) the response of denitrification within each bed substrate to the addition of their respective leaf leachates. We found that denitrification potential rates were lower in gravel beds (0.011 ± 0.006 μgN<sub>2</sub>O-N gDM<sup>−1</sup> h<sup>−1</sup>) than those observed with the addition of biochar (0.06 ± 0.03) and especially soil (0.78 ± 0.04), with soil being the most advantageous option. Besides, leaf leachates addition boosted denitrification rates in all cases. Nevertheless, the effect of leachates was relatively higher in gravel beds than in the other substrates (15 times higher vs. 2 and 4 times with soil and biochar, respectively). Our outcomes highlight limited denitrification when using gravel substrate not only by low C but also due to essential macro- and micro-elements, and support the role of plant leaves as internal and self-sustainable source of nutrients.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"68 ","pages":"Article 106360"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of leaf leachates addition on denitrification in subsurface flow constructed wetlands is shaped by the bed substrate type\",\"authors\":\"Mercedes Guerrero-Brotons , Rosa Gómez , José Álvarez-Rogel , Miguel Ángel Sánchez-Monedero , María Isabel Arce\",\"doi\":\"10.1016/j.jwpe.2024.106360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In constructed wetlands (CWs), bed substrate and leaf leachates from vegetation may correct the low C/N ratio that constrains heterotrophic denitrification and nitrate removal from irrigated agricultural drainage water. However, the interactive effects of bed substrate type and leaf leachates on denitrification are still unknown. By focusing on a CWs pilot plant, we designed a laboratory experiment to evaluate i) wether denitrification potential rates varied among bed substrates: calcareous gravel (a conventional substrate), gravel+soil from a natural wetland (silty loam Solonchak, 1.5 % of organic C) and gravel+biochar from pyrolyzed ornamental plants (75 % of organic C); and ii) the response of denitrification within each bed substrate to the addition of their respective leaf leachates. We found that denitrification potential rates were lower in gravel beds (0.011 ± 0.006 μgN<sub>2</sub>O-N gDM<sup>−1</sup> h<sup>−1</sup>) than those observed with the addition of biochar (0.06 ± 0.03) and especially soil (0.78 ± 0.04), with soil being the most advantageous option. Besides, leaf leachates addition boosted denitrification rates in all cases. Nevertheless, the effect of leachates was relatively higher in gravel beds than in the other substrates (15 times higher vs. 2 and 4 times with soil and biochar, respectively). Our outcomes highlight limited denitrification when using gravel substrate not only by low C but also due to essential macro- and micro-elements, and support the role of plant leaves as internal and self-sustainable source of nutrients.</div></div>\",\"PeriodicalId\":17528,\"journal\":{\"name\":\"Journal of water process engineering\",\"volume\":\"68 \",\"pages\":\"Article 106360\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of water process engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214714424015927\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714424015927","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
The effect of leaf leachates addition on denitrification in subsurface flow constructed wetlands is shaped by the bed substrate type
In constructed wetlands (CWs), bed substrate and leaf leachates from vegetation may correct the low C/N ratio that constrains heterotrophic denitrification and nitrate removal from irrigated agricultural drainage water. However, the interactive effects of bed substrate type and leaf leachates on denitrification are still unknown. By focusing on a CWs pilot plant, we designed a laboratory experiment to evaluate i) wether denitrification potential rates varied among bed substrates: calcareous gravel (a conventional substrate), gravel+soil from a natural wetland (silty loam Solonchak, 1.5 % of organic C) and gravel+biochar from pyrolyzed ornamental plants (75 % of organic C); and ii) the response of denitrification within each bed substrate to the addition of their respective leaf leachates. We found that denitrification potential rates were lower in gravel beds (0.011 ± 0.006 μgN2O-N gDM−1 h−1) than those observed with the addition of biochar (0.06 ± 0.03) and especially soil (0.78 ± 0.04), with soil being the most advantageous option. Besides, leaf leachates addition boosted denitrification rates in all cases. Nevertheless, the effect of leachates was relatively higher in gravel beds than in the other substrates (15 times higher vs. 2 and 4 times with soil and biochar, respectively). Our outcomes highlight limited denitrification when using gravel substrate not only by low C but also due to essential macro- and micro-elements, and support the role of plant leaves as internal and self-sustainable source of nutrients.
期刊介绍:
The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies