利用 riblet 超疏水表面持续减少泰勒-库埃特流的阻力

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Experimental Thermal and Fluid Science Pub Date : 2024-10-23 DOI:10.1016/j.expthermflusci.2024.111341
{"title":"利用 riblet 超疏水表面持续减少泰勒-库埃特流的阻力","authors":"","doi":"10.1016/j.expthermflusci.2024.111341","DOIUrl":null,"url":null,"abstract":"<div><div>Superhydrophobic surfaces (SHSs) have been proven effective in reducing frictional drag force in various flow conditions. However, at high flow speeds, the air plastron on these surfaces collapses, leading to a decline in their effectiveness. In this study, we investigated the frictional drag forces of various SHSs and their combination with surface patterns across a wide range of flow conditions (<span><math><mrow><mn>5.00</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>2</mn></msup></mrow></math></span> &lt; Re &lt; <span><math><mrow><mn>1.12</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>5</mn></msup></mrow></math></span>) by using an facile coating method. Our experiments involved incorporating a superhydrophobic coating on the inner cylinder of a custom-made Taylor-Couette apparatus, integrated with a rheometer to measure torque applied on the inner rotor as a function of rotational speed. As part of our research, we calculate the effective slip length to assess the drag reduction performance of coatings, revealing an effective slip length of around 63 µm on a flat SHS. Furthermore, we explore the combined effect of superhydrophobic coatings and triangular-shaped riblets on drag reduction in Taylor-Couette flow, comparing the performance of these surfaces based on the riblet’s sharpness and the Reynolds number. Our experimental results show a reduction in measured torque of up to 24 % and 48 % on a V-grooved SHS in laminar and turbulent flow, respectively. Longevity tests confirm that the designed surfaces maintain their superhydrophobicity and drag reduction performance under turbulent flow conditions. Overall, this work introduces a passive drag reduction strategy through surface design, which substantially mitigates the frictional drag force and demonstrating considerable potential for enhanced performance and increased efficiency of Taylor-Couette systems.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable drag reduction in Taylor-Couette flow using riblet superhydrophobic surfaces\",\"authors\":\"\",\"doi\":\"10.1016/j.expthermflusci.2024.111341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Superhydrophobic surfaces (SHSs) have been proven effective in reducing frictional drag force in various flow conditions. However, at high flow speeds, the air plastron on these surfaces collapses, leading to a decline in their effectiveness. In this study, we investigated the frictional drag forces of various SHSs and their combination with surface patterns across a wide range of flow conditions (<span><math><mrow><mn>5.00</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>2</mn></msup></mrow></math></span> &lt; Re &lt; <span><math><mrow><mn>1.12</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>5</mn></msup></mrow></math></span>) by using an facile coating method. Our experiments involved incorporating a superhydrophobic coating on the inner cylinder of a custom-made Taylor-Couette apparatus, integrated with a rheometer to measure torque applied on the inner rotor as a function of rotational speed. As part of our research, we calculate the effective slip length to assess the drag reduction performance of coatings, revealing an effective slip length of around 63 µm on a flat SHS. Furthermore, we explore the combined effect of superhydrophobic coatings and triangular-shaped riblets on drag reduction in Taylor-Couette flow, comparing the performance of these surfaces based on the riblet’s sharpness and the Reynolds number. Our experimental results show a reduction in measured torque of up to 24 % and 48 % on a V-grooved SHS in laminar and turbulent flow, respectively. Longevity tests confirm that the designed surfaces maintain their superhydrophobicity and drag reduction performance under turbulent flow conditions. Overall, this work introduces a passive drag reduction strategy through surface design, which substantially mitigates the frictional drag force and demonstrating considerable potential for enhanced performance and increased efficiency of Taylor-Couette systems.</div></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177724002103\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724002103","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,超疏水表面(SHS)能有效降低各种流动条件下的摩擦阻力。然而,在高速流动时,这些表面上的空气质点会塌陷,导致其效果下降。在本研究中,我们采用简易涂层法研究了各种 SHS 的摩擦阻力,以及它们在各种流动条件(5.00×102 < Re < 1.12×105)下与表面图案的组合。我们的实验包括在定制的泰勒-库埃特仪器的内筒上加入超疏水涂层,该仪器与流变仪集成,用于测量施加在内侧转子上的扭矩与转速的函数关系。作为研究的一部分,我们计算了有效滑移长度,以评估涂层的阻力减小性能,结果表明在平面 SHS 上的有效滑移长度约为 63 µm。此外,我们还探索了超疏水涂层和三角形波纹对泰勒-库埃特流中阻力降低的综合影响,并根据波纹的尖锐度和雷诺数对这些表面的性能进行了比较。实验结果表明,在层流和湍流中,V 形沟槽 SHS 的测量扭矩分别降低了 24% 和 48%。寿命测试证实,所设计的表面在湍流条件下仍能保持其超疏水性和减少阻力的性能。总之,这项工作通过表面设计引入了一种被动阻力减小策略,大大减轻了摩擦阻力,为提高 Taylor-Couette 系统的性能和效率展示了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable drag reduction in Taylor-Couette flow using riblet superhydrophobic surfaces
Superhydrophobic surfaces (SHSs) have been proven effective in reducing frictional drag force in various flow conditions. However, at high flow speeds, the air plastron on these surfaces collapses, leading to a decline in their effectiveness. In this study, we investigated the frictional drag forces of various SHSs and their combination with surface patterns across a wide range of flow conditions (5.00×102 < Re < 1.12×105) by using an facile coating method. Our experiments involved incorporating a superhydrophobic coating on the inner cylinder of a custom-made Taylor-Couette apparatus, integrated with a rheometer to measure torque applied on the inner rotor as a function of rotational speed. As part of our research, we calculate the effective slip length to assess the drag reduction performance of coatings, revealing an effective slip length of around 63 µm on a flat SHS. Furthermore, we explore the combined effect of superhydrophobic coatings and triangular-shaped riblets on drag reduction in Taylor-Couette flow, comparing the performance of these surfaces based on the riblet’s sharpness and the Reynolds number. Our experimental results show a reduction in measured torque of up to 24 % and 48 % on a V-grooved SHS in laminar and turbulent flow, respectively. Longevity tests confirm that the designed surfaces maintain their superhydrophobicity and drag reduction performance under turbulent flow conditions. Overall, this work introduces a passive drag reduction strategy through surface design, which substantially mitigates the frictional drag force and demonstrating considerable potential for enhanced performance and increased efficiency of Taylor-Couette systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
期刊最新文献
Editorial Board The oscillation of a falling ferrofluid droplet induced by a nonuniform magnetic field Effect of leaflet shape on the left ventricular blood flow pattern in BMHVs Lagrangian analysis of fluid transport in pulsatile post-stenotic flows Implementation of a high-frequency phosphor thermometry technique to study the heat transfer of a single droplet impingement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1