Han Tao , Ya-Ni Li , Hai-Yuan Zhou , Jing-Yi Sun , Meng-Jia Fang , Wan-Hao Cai , Hui-Li Wang
{"title":"揭示面团混合过程中小麦阿拉伯木聚糖与不同分子量小麦面筋蛋白之间的结合机制","authors":"Han Tao , Ya-Ni Li , Hai-Yuan Zhou , Jing-Yi Sun , Meng-Jia Fang , Wan-Hao Cai , Hui-Li Wang","doi":"10.1016/j.foodhyd.2024.110762","DOIUrl":null,"url":null,"abstract":"<div><div>Water-soluble arabinoxylans (AX) is an important dietary fiber in wheat bran that influence the gluten network. However, a comprehensive understanding of the mechanism remains unclear. This study compared the interactions between AX and high/low molecular weights of glutenin (HMW/LMW) and found that AX-HMW developed a more uniformed structure than AX-LMW. The optimized property was found at 8% AX (AX8-HMW) when the disulfide bonds, foaming and emulsifying properties reaches highest, which is better than the optimized AX4-LMW. However, higher AX ratio led to poor properties due to AX self-aggregation. The enhancement property can be associated with the formation of molecular complexes. Both HMW and LMW can capture and encapsulate AX to form stable structures, with the binding strength of AX-HMW being stronger than that of AX-LMW, resulting in macroscopic properties. Our findings clarify the interaction mechanism between AX and different molecular weight of glutenins which contributes to understand the role of AX in the dough mixing process.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110762"},"PeriodicalIF":11.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the binding mechanism between wheat arabinoxylan and different molecular weights of wheat glutenins during the dough mixing process\",\"authors\":\"Han Tao , Ya-Ni Li , Hai-Yuan Zhou , Jing-Yi Sun , Meng-Jia Fang , Wan-Hao Cai , Hui-Li Wang\",\"doi\":\"10.1016/j.foodhyd.2024.110762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water-soluble arabinoxylans (AX) is an important dietary fiber in wheat bran that influence the gluten network. However, a comprehensive understanding of the mechanism remains unclear. This study compared the interactions between AX and high/low molecular weights of glutenin (HMW/LMW) and found that AX-HMW developed a more uniformed structure than AX-LMW. The optimized property was found at 8% AX (AX8-HMW) when the disulfide bonds, foaming and emulsifying properties reaches highest, which is better than the optimized AX4-LMW. However, higher AX ratio led to poor properties due to AX self-aggregation. The enhancement property can be associated with the formation of molecular complexes. Both HMW and LMW can capture and encapsulate AX to form stable structures, with the binding strength of AX-HMW being stronger than that of AX-LMW, resulting in macroscopic properties. Our findings clarify the interaction mechanism between AX and different molecular weight of glutenins which contributes to understand the role of AX in the dough mixing process.</div></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"160 \",\"pages\":\"Article 110762\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X24010361\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24010361","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Unveiling the binding mechanism between wheat arabinoxylan and different molecular weights of wheat glutenins during the dough mixing process
Water-soluble arabinoxylans (AX) is an important dietary fiber in wheat bran that influence the gluten network. However, a comprehensive understanding of the mechanism remains unclear. This study compared the interactions between AX and high/low molecular weights of glutenin (HMW/LMW) and found that AX-HMW developed a more uniformed structure than AX-LMW. The optimized property was found at 8% AX (AX8-HMW) when the disulfide bonds, foaming and emulsifying properties reaches highest, which is better than the optimized AX4-LMW. However, higher AX ratio led to poor properties due to AX self-aggregation. The enhancement property can be associated with the formation of molecular complexes. Both HMW and LMW can capture and encapsulate AX to form stable structures, with the binding strength of AX-HMW being stronger than that of AX-LMW, resulting in macroscopic properties. Our findings clarify the interaction mechanism between AX and different molecular weight of glutenins which contributes to understand the role of AX in the dough mixing process.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.