Xiaoyun Chen , Feifan Zhang , Qiaomei Yang , Rusen Zhou , Yan Xu , Pingping Gao , Yadong Zhao
{"title":"羧基纤维素作为超稳定皮克林乳剂的有效稳定剂:不同羧基和颗粒形态对性能的影响","authors":"Xiaoyun Chen , Feifan Zhang , Qiaomei Yang , Rusen Zhou , Yan Xu , Pingping Gao , Yadong Zhao","doi":"10.1016/j.foodhyd.2024.110735","DOIUrl":null,"url":null,"abstract":"<div><div>Carboxyl functionalization of cellulose could enhance its stabilizing ability in Pickering emulsions, though the influences of different carboxylation methods remain largely unknown. In order to fill in this knowledge gap, three typical carboxylated cellulosic materials, TEMPO-oxidized cellulose nanofibrils (TCN), carboxymethylated cellulose nanofibrils (CM-CN) and carboxymethyl cellulose (CMC), have been investigated to stabilize Pickering emulsions. There is a common feature among the three carboxylated cellulosic materials that they were all adsorbed at oil-water interface to form an elastic cellulose particle shell around oil droplets. However, the networks formed in the aqueous phase were quite different. For both TCN and CM-CN, the physical entanglement of the fibers and the interactions between fibers, mainly intramolecular hydrogen bonds, led to strong networks in the aqueous phase, thus contributing to good stability of Pickering emulsions. In contrary, the interaction between the suspended CMC particles was limited, which could not drive them to form a continuous network in the aqueous phase, so that CMC was least effective to stabilize oil droplets as indicated by the clearly observed phase separation even in the freshly prepared Pickering emulsions. Specifically, CM-CN with a larger aspect ratio (length of 499 ± 306 nm and diameter of 7 ± 2 nm), excellent thermal stability and comparatively high three phase contact angle (78.4°) was an effective stabilizer to prepare a super-stable Pickering emulsion, which had best emulsifying index (100%) even after 30-day of storage. This study demonstrated that different carboxyl functionalization would lead to different properties of cellulose, thus affecting their performance in stabilizing Pickering emulsions.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110735"},"PeriodicalIF":11.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carboxylated celluloses as effective stabilizers for super-stable Pickering emulsions: Effects of different carboxyl moieties and particle morphologies on performance\",\"authors\":\"Xiaoyun Chen , Feifan Zhang , Qiaomei Yang , Rusen Zhou , Yan Xu , Pingping Gao , Yadong Zhao\",\"doi\":\"10.1016/j.foodhyd.2024.110735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carboxyl functionalization of cellulose could enhance its stabilizing ability in Pickering emulsions, though the influences of different carboxylation methods remain largely unknown. In order to fill in this knowledge gap, three typical carboxylated cellulosic materials, TEMPO-oxidized cellulose nanofibrils (TCN), carboxymethylated cellulose nanofibrils (CM-CN) and carboxymethyl cellulose (CMC), have been investigated to stabilize Pickering emulsions. There is a common feature among the three carboxylated cellulosic materials that they were all adsorbed at oil-water interface to form an elastic cellulose particle shell around oil droplets. However, the networks formed in the aqueous phase were quite different. For both TCN and CM-CN, the physical entanglement of the fibers and the interactions between fibers, mainly intramolecular hydrogen bonds, led to strong networks in the aqueous phase, thus contributing to good stability of Pickering emulsions. In contrary, the interaction between the suspended CMC particles was limited, which could not drive them to form a continuous network in the aqueous phase, so that CMC was least effective to stabilize oil droplets as indicated by the clearly observed phase separation even in the freshly prepared Pickering emulsions. Specifically, CM-CN with a larger aspect ratio (length of 499 ± 306 nm and diameter of 7 ± 2 nm), excellent thermal stability and comparatively high three phase contact angle (78.4°) was an effective stabilizer to prepare a super-stable Pickering emulsion, which had best emulsifying index (100%) even after 30-day of storage. This study demonstrated that different carboxyl functionalization would lead to different properties of cellulose, thus affecting their performance in stabilizing Pickering emulsions.</div></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"160 \",\"pages\":\"Article 110735\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X24010099\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24010099","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Carboxylated celluloses as effective stabilizers for super-stable Pickering emulsions: Effects of different carboxyl moieties and particle morphologies on performance
Carboxyl functionalization of cellulose could enhance its stabilizing ability in Pickering emulsions, though the influences of different carboxylation methods remain largely unknown. In order to fill in this knowledge gap, three typical carboxylated cellulosic materials, TEMPO-oxidized cellulose nanofibrils (TCN), carboxymethylated cellulose nanofibrils (CM-CN) and carboxymethyl cellulose (CMC), have been investigated to stabilize Pickering emulsions. There is a common feature among the three carboxylated cellulosic materials that they were all adsorbed at oil-water interface to form an elastic cellulose particle shell around oil droplets. However, the networks formed in the aqueous phase were quite different. For both TCN and CM-CN, the physical entanglement of the fibers and the interactions between fibers, mainly intramolecular hydrogen bonds, led to strong networks in the aqueous phase, thus contributing to good stability of Pickering emulsions. In contrary, the interaction between the suspended CMC particles was limited, which could not drive them to form a continuous network in the aqueous phase, so that CMC was least effective to stabilize oil droplets as indicated by the clearly observed phase separation even in the freshly prepared Pickering emulsions. Specifically, CM-CN with a larger aspect ratio (length of 499 ± 306 nm and diameter of 7 ± 2 nm), excellent thermal stability and comparatively high three phase contact angle (78.4°) was an effective stabilizer to prepare a super-stable Pickering emulsion, which had best emulsifying index (100%) even after 30-day of storage. This study demonstrated that different carboxyl functionalization would lead to different properties of cellulose, thus affecting their performance in stabilizing Pickering emulsions.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.