{"title":"具有增强负泊松比效应和能量吸收功能的多弧重入式辅助蜂窝的面内特性","authors":"Hao Xu , Hai-Tao Liu , Guo-Feng Li","doi":"10.1016/j.euromechsol.2024.105473","DOIUrl":null,"url":null,"abstract":"<div><div>Based on conventional re-entrant auxetic honeycomb (CRAH), a multi-arc re-entrant auxetic honeycomb (MARAH) is proposed. The mechanical properties of the honeycomb can be significantly improved by introducing multiple arcs. Through theoretical analysis, finite element analysis, and experiment, the influence of arc radius, arc angle, and cell wall thickness on effective Poisson's ratio, effective Young's modulus, energy absorption, and stress level are investigated. There are significant differences between MARAH and CRAH in Poisson's ratio, deformation mode, stress level, and energy absorption. Compared with CRAH, MARAH has a better negative Poisson's ratio effect, wider Poisson's ratio adjustable range, better energy absorption, and superior stability. In addition, the reduction of the yield stress can effectively reduce the damage of impact load on the honeycomb. The research results can provide new ideas for the design and application of new metamaterials.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"109 ","pages":"Article 105473"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-plane characteristics of a multi-arc re-entrant auxetic honeycomb with enhanced negative Poisson's ratio effect and energy absorption\",\"authors\":\"Hao Xu , Hai-Tao Liu , Guo-Feng Li\",\"doi\":\"10.1016/j.euromechsol.2024.105473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on conventional re-entrant auxetic honeycomb (CRAH), a multi-arc re-entrant auxetic honeycomb (MARAH) is proposed. The mechanical properties of the honeycomb can be significantly improved by introducing multiple arcs. Through theoretical analysis, finite element analysis, and experiment, the influence of arc radius, arc angle, and cell wall thickness on effective Poisson's ratio, effective Young's modulus, energy absorption, and stress level are investigated. There are significant differences between MARAH and CRAH in Poisson's ratio, deformation mode, stress level, and energy absorption. Compared with CRAH, MARAH has a better negative Poisson's ratio effect, wider Poisson's ratio adjustable range, better energy absorption, and superior stability. In addition, the reduction of the yield stress can effectively reduce the damage of impact load on the honeycomb. The research results can provide new ideas for the design and application of new metamaterials.</div></div>\",\"PeriodicalId\":50483,\"journal\":{\"name\":\"European Journal of Mechanics A-Solids\",\"volume\":\"109 \",\"pages\":\"Article 105473\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics A-Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997753824002535\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824002535","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
In-plane characteristics of a multi-arc re-entrant auxetic honeycomb with enhanced negative Poisson's ratio effect and energy absorption
Based on conventional re-entrant auxetic honeycomb (CRAH), a multi-arc re-entrant auxetic honeycomb (MARAH) is proposed. The mechanical properties of the honeycomb can be significantly improved by introducing multiple arcs. Through theoretical analysis, finite element analysis, and experiment, the influence of arc radius, arc angle, and cell wall thickness on effective Poisson's ratio, effective Young's modulus, energy absorption, and stress level are investigated. There are significant differences between MARAH and CRAH in Poisson's ratio, deformation mode, stress level, and energy absorption. Compared with CRAH, MARAH has a better negative Poisson's ratio effect, wider Poisson's ratio adjustable range, better energy absorption, and superior stability. In addition, the reduction of the yield stress can effectively reduce the damage of impact load on the honeycomb. The research results can provide new ideas for the design and application of new metamaterials.
期刊介绍:
The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.