复合电极中 MXene 和 Co3O4 的协同效应:高性能储能解决方案

IF 4.1 3区 化学 Q1 CHEMISTRY, ANALYTICAL Journal of Electroanalytical Chemistry Pub Date : 2024-10-20 DOI:10.1016/j.jelechem.2024.118720
Jiawei Wu , Yuanqing Chen , Xujiang Liang , Muslum Demir , Weibai Bian
{"title":"复合电极中 MXene 和 Co3O4 的协同效应:高性能储能解决方案","authors":"Jiawei Wu ,&nbsp;Yuanqing Chen ,&nbsp;Xujiang Liang ,&nbsp;Muslum Demir ,&nbsp;Weibai Bian","doi":"10.1016/j.jelechem.2024.118720","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-performance electrode materials is crucial for advancing supercapacitor technology. The two-dimensional layered structure of MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) presents high conductivity, abundant surface functional groups and accessible ion interaction between layers. However, the MXene suffers from the layer aggregation. To overcome this issue, we synthesized a composite material combining MXene with cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) to enhance electrochemical performance in supercapacitors. MXene’s two-dimensional layered structure, high conductivity, and abundant surface functional groups allow for efficient ion intercalation, while Co<sub>3</sub>O<sub>4</sub> contributes high theoretical capacitance and rich oxidation states. The resulted MXene/Co<sub>3</sub>O<sub>4</sub> composite exhibits an impressive areal capacitance of 6.456F/cm<sup>2</sup> at a current density of 3 mA/cm<sup>2</sup>, maintaining 90.52 % capacitance retention at 30 mA/cm<sup>2</sup>, and 81.37 % capacity after 5000 charge–discharge cycles. Additionally, the asymmetric supercapacitor (ASC) device fabricated using the MXene/Co<sub>3</sub>O<sub>4</sub> composite achieves a power density of 6.41 mW/cm<sup>2</sup> at an energy density of 0.37 mWh/cm<sup>2</sup>, with 82.3 % capacitance retention after 5000 cycles. These results demonstrate that the MXene/Co<sub>3</sub>O<sub>4</sub> composite material is a promising candidate for high-performance supercapacitors, offering significant improvements in rate capability and long-term cycling stability.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"975 ","pages":"Article 118720"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effects of MXene and Co3O4 in composite electrodes: High-performance energy storage solutions\",\"authors\":\"Jiawei Wu ,&nbsp;Yuanqing Chen ,&nbsp;Xujiang Liang ,&nbsp;Muslum Demir ,&nbsp;Weibai Bian\",\"doi\":\"10.1016/j.jelechem.2024.118720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of high-performance electrode materials is crucial for advancing supercapacitor technology. The two-dimensional layered structure of MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) presents high conductivity, abundant surface functional groups and accessible ion interaction between layers. However, the MXene suffers from the layer aggregation. To overcome this issue, we synthesized a composite material combining MXene with cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) to enhance electrochemical performance in supercapacitors. MXene’s two-dimensional layered structure, high conductivity, and abundant surface functional groups allow for efficient ion intercalation, while Co<sub>3</sub>O<sub>4</sub> contributes high theoretical capacitance and rich oxidation states. The resulted MXene/Co<sub>3</sub>O<sub>4</sub> composite exhibits an impressive areal capacitance of 6.456F/cm<sup>2</sup> at a current density of 3 mA/cm<sup>2</sup>, maintaining 90.52 % capacitance retention at 30 mA/cm<sup>2</sup>, and 81.37 % capacity after 5000 charge–discharge cycles. Additionally, the asymmetric supercapacitor (ASC) device fabricated using the MXene/Co<sub>3</sub>O<sub>4</sub> composite achieves a power density of 6.41 mW/cm<sup>2</sup> at an energy density of 0.37 mWh/cm<sup>2</sup>, with 82.3 % capacitance retention after 5000 cycles. These results demonstrate that the MXene/Co<sub>3</sub>O<sub>4</sub> composite material is a promising candidate for high-performance supercapacitors, offering significant improvements in rate capability and long-term cycling stability.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"975 \",\"pages\":\"Article 118720\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665724006982\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724006982","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发高性能电极材料对于推动超级电容器技术的发展至关重要。二维层状结构的 MXene(Ti3C2Tx)具有高导电性、丰富的表面官能团和层间可进行离子相互作用。然而,MXene 存在层聚集的问题。为了克服这一问题,我们合成了一种 MXene 与氧化钴(Co3O4)的复合材料,以提高超级电容器的电化学性能。MXene 的二维层状结构、高导电性和丰富的表面官能团可实现高效离子插层,而 Co3O4 则具有高理论电容和丰富的氧化态。最终得到的 MXene/Co3O4 复合材料在电流密度为 3 mA/cm2 时显示出 6.456F/cm2 的惊人面积电容,在 30 mA/cm2 时保持 90.52% 的电容保持率,在 5000 次充放电循环后保持 81.37% 的电容量。此外,使用 MXene/Co3O4 复合材料制造的非对称超级电容器 (ASC) 器件在能量密度为 0.37 mWh/cm2 的情况下功率密度达到 6.41 mW/cm2,5000 次循环后电容保持率为 82.3%。这些结果表明,MXene/Co3O4 复合材料是高性能超级电容器的理想候选材料,可显著提高速率能力和长期循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic effects of MXene and Co3O4 in composite electrodes: High-performance energy storage solutions
The development of high-performance electrode materials is crucial for advancing supercapacitor technology. The two-dimensional layered structure of MXene (Ti3C2Tx) presents high conductivity, abundant surface functional groups and accessible ion interaction between layers. However, the MXene suffers from the layer aggregation. To overcome this issue, we synthesized a composite material combining MXene with cobalt oxide (Co3O4) to enhance electrochemical performance in supercapacitors. MXene’s two-dimensional layered structure, high conductivity, and abundant surface functional groups allow for efficient ion intercalation, while Co3O4 contributes high theoretical capacitance and rich oxidation states. The resulted MXene/Co3O4 composite exhibits an impressive areal capacitance of 6.456F/cm2 at a current density of 3 mA/cm2, maintaining 90.52 % capacitance retention at 30 mA/cm2, and 81.37 % capacity after 5000 charge–discharge cycles. Additionally, the asymmetric supercapacitor (ASC) device fabricated using the MXene/Co3O4 composite achieves a power density of 6.41 mW/cm2 at an energy density of 0.37 mWh/cm2, with 82.3 % capacitance retention after 5000 cycles. These results demonstrate that the MXene/Co3O4 composite material is a promising candidate for high-performance supercapacitors, offering significant improvements in rate capability and long-term cycling stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
6.70%
发文量
912
审稿时长
2.4 months
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
期刊最新文献
Editorial Board Hydrothermal synthesis of self-supported hierarchical microflowers of Co3O4 nanowires for potential supercapacitor application Corrigendum to “A comprehensive electrochemical analysis revealing the surface oxidation behavior difference between pyrite and arsenopyrite” [J. Electroanal. Chem. 969 (2024) 118552] Understanding the electrocatalytic role of magnesium doped bismuth copper titanate (BCTO) in oxygen evolution reaction The microstructure and energy-band structure coupling regulation of Ti-doped seed layer for the NiO electrochromic composite films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1