Changxin Han , Juanjuan Cheng , Yun Ou , Longfei Liu , Yuxuan Xiao , Shuang Du , Changzhang Jian
{"title":"用于稳定的锌-离子水电池的桦烷型二氧化锰/膨胀石墨阴极的缩小晶格间距","authors":"Changxin Han , Juanjuan Cheng , Yun Ou , Longfei Liu , Yuxuan Xiao , Shuang Du , Changzhang Jian","doi":"10.1016/j.jelechem.2024.118732","DOIUrl":null,"url":null,"abstract":"<div><div>Manganese oxides (MnO<sub>x</sub>) have attracted much attention due to abundant resource, low cost and eco-friendliness. In this study, birnessite type manganese dioxide/expanded graphite composites (KMO/EG) with a reduced lattice spacing of nanoflower and nanowire heterostructure KMO have been synthesized by a one-step hydrothermal method. The morphology of KMO has transformed from nanoflower to nanowire with a reduced lattice spacing due to nucleation sites on the surface of EG. The KMO/EG achieves a specific capacity of 444.5mAh g<strong><sup>−</sup></strong><sup>1</sup> and remains at 387.9mAh g<strong><sup>−</sup></strong><sup>1</sup> after 100 cycles at 0.1 A g <strong><sup>−</sup></strong><sup>1</sup> for Zn-ion battery. The enhanced specific capacity of KMO/EG is mainly attributed to the capacity contribution of EG and the good stability is related to the more stable structure of KMO caused by reduced lattice spacing.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"975 ","pages":"Article 118732"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced lattice spacing of birnessite type manganese dioxide/ expanded graphite cathode for stable aqueous zinc-ion batteries\",\"authors\":\"Changxin Han , Juanjuan Cheng , Yun Ou , Longfei Liu , Yuxuan Xiao , Shuang Du , Changzhang Jian\",\"doi\":\"10.1016/j.jelechem.2024.118732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Manganese oxides (MnO<sub>x</sub>) have attracted much attention due to abundant resource, low cost and eco-friendliness. In this study, birnessite type manganese dioxide/expanded graphite composites (KMO/EG) with a reduced lattice spacing of nanoflower and nanowire heterostructure KMO have been synthesized by a one-step hydrothermal method. The morphology of KMO has transformed from nanoflower to nanowire with a reduced lattice spacing due to nucleation sites on the surface of EG. The KMO/EG achieves a specific capacity of 444.5mAh g<strong><sup>−</sup></strong><sup>1</sup> and remains at 387.9mAh g<strong><sup>−</sup></strong><sup>1</sup> after 100 cycles at 0.1 A g <strong><sup>−</sup></strong><sup>1</sup> for Zn-ion battery. The enhanced specific capacity of KMO/EG is mainly attributed to the capacity contribution of EG and the good stability is related to the more stable structure of KMO caused by reduced lattice spacing.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"975 \",\"pages\":\"Article 118732\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665724007100\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007100","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Reduced lattice spacing of birnessite type manganese dioxide/ expanded graphite cathode for stable aqueous zinc-ion batteries
Manganese oxides (MnOx) have attracted much attention due to abundant resource, low cost and eco-friendliness. In this study, birnessite type manganese dioxide/expanded graphite composites (KMO/EG) with a reduced lattice spacing of nanoflower and nanowire heterostructure KMO have been synthesized by a one-step hydrothermal method. The morphology of KMO has transformed from nanoflower to nanowire with a reduced lattice spacing due to nucleation sites on the surface of EG. The KMO/EG achieves a specific capacity of 444.5mAh g−1 and remains at 387.9mAh g−1 after 100 cycles at 0.1 A g −1 for Zn-ion battery. The enhanced specific capacity of KMO/EG is mainly attributed to the capacity contribution of EG and the good stability is related to the more stable structure of KMO caused by reduced lattice spacing.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.