{"title":"针对二维时空湍流的基于扩散的超分辨率神经可微分建模","authors":"Xiantao Fan , Deepak Akhare , Jian-Xun Wang","doi":"10.1016/j.cma.2024.117478","DOIUrl":null,"url":null,"abstract":"<div><div>Simulating spatiotemporal turbulence with high fidelity remains a cornerstone challenge in computational fluid dynamics (CFD) due to its intricate multiscale nature and prohibitive computational demands. Traditional approaches typically employ closure models, which attempt to represent small-scale features in an unresolved manner. However, these methods often sacrifice accuracy and lose high-frequency/wavenumber information, especially in scenarios involving complex flow physics. In this paper, we introduce an innovative neural differentiable modeling framework designed to enhance the predictability and efficiency of spatiotemporal turbulence simulations. Our approach features differentiable hybrid modeling techniques that seamlessly integrate deep neural networks with numerical PDE solvers within a differentiable programming framework, synergizing deep learning with physics-based CFD modeling. Specifically, a hybrid differentiable neural solver is constructed on a coarser grid to capture large-scale turbulent phenomena, followed by the application of a Bayesian conditional diffusion model that generates small-scale turbulence conditioned on large-scale flow predictions. Two innovative hybrid architecture designs are studied, and their performance is evaluated through comparative analysis against conventional large eddy simulation techniques with physics-based subgrid-scale closures and purely data-driven neural solvers. The findings underscore the potential of the neural differentiable modeling framework to significantly enhance the accuracy and computational efficiency of turbulence simulations. This study not only demonstrates the efficacy of merging deep learning with physics-based numerical solvers but also sets a new precedent for advanced CFD modeling techniques, highlighting the transformative impact of differentiable programming in scientific computing.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117478"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural differentiable modeling with diffusion-based super-resolution for two-dimensional spatiotemporal turbulence\",\"authors\":\"Xiantao Fan , Deepak Akhare , Jian-Xun Wang\",\"doi\":\"10.1016/j.cma.2024.117478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Simulating spatiotemporal turbulence with high fidelity remains a cornerstone challenge in computational fluid dynamics (CFD) due to its intricate multiscale nature and prohibitive computational demands. Traditional approaches typically employ closure models, which attempt to represent small-scale features in an unresolved manner. However, these methods often sacrifice accuracy and lose high-frequency/wavenumber information, especially in scenarios involving complex flow physics. In this paper, we introduce an innovative neural differentiable modeling framework designed to enhance the predictability and efficiency of spatiotemporal turbulence simulations. Our approach features differentiable hybrid modeling techniques that seamlessly integrate deep neural networks with numerical PDE solvers within a differentiable programming framework, synergizing deep learning with physics-based CFD modeling. Specifically, a hybrid differentiable neural solver is constructed on a coarser grid to capture large-scale turbulent phenomena, followed by the application of a Bayesian conditional diffusion model that generates small-scale turbulence conditioned on large-scale flow predictions. Two innovative hybrid architecture designs are studied, and their performance is evaluated through comparative analysis against conventional large eddy simulation techniques with physics-based subgrid-scale closures and purely data-driven neural solvers. The findings underscore the potential of the neural differentiable modeling framework to significantly enhance the accuracy and computational efficiency of turbulence simulations. This study not only demonstrates the efficacy of merging deep learning with physics-based numerical solvers but also sets a new precedent for advanced CFD modeling techniques, highlighting the transformative impact of differentiable programming in scientific computing.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"433 \",\"pages\":\"Article 117478\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524007321\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007321","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Neural differentiable modeling with diffusion-based super-resolution for two-dimensional spatiotemporal turbulence
Simulating spatiotemporal turbulence with high fidelity remains a cornerstone challenge in computational fluid dynamics (CFD) due to its intricate multiscale nature and prohibitive computational demands. Traditional approaches typically employ closure models, which attempt to represent small-scale features in an unresolved manner. However, these methods often sacrifice accuracy and lose high-frequency/wavenumber information, especially in scenarios involving complex flow physics. In this paper, we introduce an innovative neural differentiable modeling framework designed to enhance the predictability and efficiency of spatiotemporal turbulence simulations. Our approach features differentiable hybrid modeling techniques that seamlessly integrate deep neural networks with numerical PDE solvers within a differentiable programming framework, synergizing deep learning with physics-based CFD modeling. Specifically, a hybrid differentiable neural solver is constructed on a coarser grid to capture large-scale turbulent phenomena, followed by the application of a Bayesian conditional diffusion model that generates small-scale turbulence conditioned on large-scale flow predictions. Two innovative hybrid architecture designs are studied, and their performance is evaluated through comparative analysis against conventional large eddy simulation techniques with physics-based subgrid-scale closures and purely data-driven neural solvers. The findings underscore the potential of the neural differentiable modeling framework to significantly enhance the accuracy and computational efficiency of turbulence simulations. This study not only demonstrates the efficacy of merging deep learning with physics-based numerical solvers but also sets a new precedent for advanced CFD modeling techniques, highlighting the transformative impact of differentiable programming in scientific computing.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.