Yiran Ji , Feifei Zheng , Jinhua Wen , Qifeng Li , Junyi Chen , Holger R. Maier , Hoshin V. Gupta
{"title":"一个 R 软件包,用于分割用于模型开发和评估的观测数据,以实现模型的普适性","authors":"Yiran Ji , Feifei Zheng , Jinhua Wen , Qifeng Li , Junyi Chen , Holger R. Maier , Hoshin V. Gupta","doi":"10.1016/j.envsoft.2024.106238","DOIUrl":null,"url":null,"abstract":"<div><div>Development of environmental models generally requires available data to be split into “development” and “evaluation” subsets. How this is done can significantly affect a model's outputs and performance. However, data splitting is generally done in a subjective, ad-hoc manner, with little justification, raising questions regarding the reliability of the findings of many modelling studies. To address this issue, we present and demonstrate the value of an R-package along with high-level guidelines for implementing many state-of-the-art data splitting methods in order to develop the model in a considered, defensible, consistent, repeatable and transparent fashion, thereby improving the generalizability of the resulting models. Results from two rainfall-runoff case studies show that models with high generalization ability can be achieved even when the available data contain rare, extreme events. Additionally, data splitting methods can be used to explicitly quantify the parameter uncertainty associated with data splitting and the resulting bounds on model predictions.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106238"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An R package to partition observation data used for model development and evaluation to achieve model generalizability\",\"authors\":\"Yiran Ji , Feifei Zheng , Jinhua Wen , Qifeng Li , Junyi Chen , Holger R. Maier , Hoshin V. Gupta\",\"doi\":\"10.1016/j.envsoft.2024.106238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Development of environmental models generally requires available data to be split into “development” and “evaluation” subsets. How this is done can significantly affect a model's outputs and performance. However, data splitting is generally done in a subjective, ad-hoc manner, with little justification, raising questions regarding the reliability of the findings of many modelling studies. To address this issue, we present and demonstrate the value of an R-package along with high-level guidelines for implementing many state-of-the-art data splitting methods in order to develop the model in a considered, defensible, consistent, repeatable and transparent fashion, thereby improving the generalizability of the resulting models. Results from two rainfall-runoff case studies show that models with high generalization ability can be achieved even when the available data contain rare, extreme events. Additionally, data splitting methods can be used to explicitly quantify the parameter uncertainty associated with data splitting and the resulting bounds on model predictions.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"183 \",\"pages\":\"Article 106238\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002998\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002998","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
开发环境模型通常需要将可用数据分成 "开发 "和 "评估 "两个子集。如何分割会对模型的输出结果和性能产生重大影响。然而,数据分割通常是以主观的、临时的方式进行的,没有什么正当理由,这就对许多建模研究结果的可靠性提出了质疑。为了解决这个问题,我们介绍并演示了 R 软件包的价值,以及实施许多最先进数据拆分方法的高级指南,以便以一种经过深思熟虑、可辩护、一致、可重复和透明的方式开发模型,从而提高所生成模型的可推广性。两个降雨-径流案例研究的结果表明,即使现有数据包含罕见的极端事件,也可以建立具有高泛化能力的模型。此外,数据拆分方法可用于明确量化与数据拆分相关的参数不确定性以及由此产生的模型预测界限。
An R package to partition observation data used for model development and evaluation to achieve model generalizability
Development of environmental models generally requires available data to be split into “development” and “evaluation” subsets. How this is done can significantly affect a model's outputs and performance. However, data splitting is generally done in a subjective, ad-hoc manner, with little justification, raising questions regarding the reliability of the findings of many modelling studies. To address this issue, we present and demonstrate the value of an R-package along with high-level guidelines for implementing many state-of-the-art data splitting methods in order to develop the model in a considered, defensible, consistent, repeatable and transparent fashion, thereby improving the generalizability of the resulting models. Results from two rainfall-runoff case studies show that models with high generalization ability can be achieved even when the available data contain rare, extreme events. Additionally, data splitting methods can be used to explicitly quantify the parameter uncertainty associated with data splitting and the resulting bounds on model predictions.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.