利用贝叶斯数据驱动法确定发射率曲线

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-10-18 DOI:10.1016/j.matcom.2024.10.015
Luca Sgheri , Cristina Sgattoni , Chiara Zugarini
{"title":"利用贝叶斯数据驱动法确定发射率曲线","authors":"Luca Sgheri ,&nbsp;Cristina Sgattoni ,&nbsp;Chiara Zugarini","doi":"10.1016/j.matcom.2024.10.015","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we explore the determination of a spectral emissivity profile that closely matches real data, intended for use as an initial guess and/or a priori information in a retrieval code. Our approach employs a Bayesian method that integrates the CAMEL (Combined ASTER MODIS Emissivity over Land) emissivity database with the MODIS/Terra+Aqua Yearly Land Cover Type database. The solution is derived as a convex combination of high-resolution Huang profiles using the Bayesian framework. We test our method on IASI (Infrared Atmospheric Sounding Interferometer) data and find that it outperforms the linear spline interpolation of the CAMEL data and the Huang emissivity database itself.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of emissivity profiles using a Bayesian data-driven approach\",\"authors\":\"Luca Sgheri ,&nbsp;Cristina Sgattoni ,&nbsp;Chiara Zugarini\",\"doi\":\"10.1016/j.matcom.2024.10.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we explore the determination of a spectral emissivity profile that closely matches real data, intended for use as an initial guess and/or a priori information in a retrieval code. Our approach employs a Bayesian method that integrates the CAMEL (Combined ASTER MODIS Emissivity over Land) emissivity database with the MODIS/Terra+Aqua Yearly Land Cover Type database. The solution is derived as a convex combination of high-resolution Huang profiles using the Bayesian framework. We test our method on IASI (Infrared Atmospheric Sounding Interferometer) data and find that it outperforms the linear spline interpolation of the CAMEL data and the Huang emissivity database itself.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424004051\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004051","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探讨了如何确定与真实数据密切匹配的光谱发射率曲线,以用作检索代码中的初始猜测和/或先验信息。我们的方法采用贝叶斯方法,将 CAMEL(Combined ASTER MODIS Emissivity over Land)发射率数据库与 MODIS/Terra+Aqua Annually Land Cover Type 数据库整合在一起。利用贝叶斯框架,以高分辨率黄剖面凸组合的形式得出解决方案。我们在 IASI(红外大气探测干涉仪)数据上测试了我们的方法,发现它优于 CAMEL 数据的线性样条插值法和黄发射率数据库本身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of emissivity profiles using a Bayesian data-driven approach
In this paper, we explore the determination of a spectral emissivity profile that closely matches real data, intended for use as an initial guess and/or a priori information in a retrieval code. Our approach employs a Bayesian method that integrates the CAMEL (Combined ASTER MODIS Emissivity over Land) emissivity database with the MODIS/Terra+Aqua Yearly Land Cover Type database. The solution is derived as a convex combination of high-resolution Huang profiles using the Bayesian framework. We test our method on IASI (Infrared Atmospheric Sounding Interferometer) data and find that it outperforms the linear spline interpolation of the CAMEL data and the Huang emissivity database itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1