印度东北部下方的浅地幔地震不连续性:接收函数分析提供的证据

IF 2.7 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Asian Earth Sciences Pub Date : 2024-10-20 DOI:10.1016/j.jseaes.2024.106375
Devajit Hazarika , Neeharika Shukla , Amlanjyoti Das , Somak Hajra , Sagarika Mukhopadhyay
{"title":"印度东北部下方的浅地幔地震不连续性:接收函数分析提供的证据","authors":"Devajit Hazarika ,&nbsp;Neeharika Shukla ,&nbsp;Amlanjyoti Das ,&nbsp;Somak Hajra ,&nbsp;Sagarika Mukhopadhyay","doi":"10.1016/j.jseaes.2024.106375","DOIUrl":null,"url":null,"abstract":"<div><div>The crust and shallow upper mantle structure beneath the Upper Brahmaputra Valley, Indo-Burma Ranges, and Bengal Basin of Northeast India have been investigated based on receiver function (RF) analysis of teleseismic earthquakes recorded by 11 seismological stations. The study reveals a thin crust (∼35 km) beneath the Brahmaputra Valley (at JORH station) with a surface sedimentary layer of ∼4 km thick. The crustal thickness is observed to increase towards the north in the Himalaya (∼40 km at ZIRO and ITAN) and to the south (up to ∼46 km at KOHI). The crustal thickness near the Tripura fold-belt and Bengal Basin varies within ∼36–40 km. The study reveals the existence of a shallow mantle discontinuity (Hales discontinuity) at a variable depth range of ∼54–78 km characterized by a step increase (∼7.5–11 %) in shear wave velocity observed in the inverted models. The mineralogical phase transformation from spinel to garnet is considered as the origin of this discontinuity. The shallow depth of the discontinuity indicates an increase in upper mantle temperature which conforms to the high geothermal gradient reported in the region. The variation of depth of the discontinuity can be interpreted in terms of the addition of Cr<sup>+3</sup> that shifts the spinel-garnet stability field to higher depths whereas Fe<sup>+2</sup> shifts it to lower depths. Despite the high temperature in the upper mantle, the observed low Vp/Vs ratio (1.65–1.75) below the Hales discontinuity can be explained by the presence of a high fraction of orthopyroxene.</div></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":"276 ","pages":"Article 106375"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A shallow mantle seismic discontinuity beneath northeast India: Evidence from receiver function analyses\",\"authors\":\"Devajit Hazarika ,&nbsp;Neeharika Shukla ,&nbsp;Amlanjyoti Das ,&nbsp;Somak Hajra ,&nbsp;Sagarika Mukhopadhyay\",\"doi\":\"10.1016/j.jseaes.2024.106375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The crust and shallow upper mantle structure beneath the Upper Brahmaputra Valley, Indo-Burma Ranges, and Bengal Basin of Northeast India have been investigated based on receiver function (RF) analysis of teleseismic earthquakes recorded by 11 seismological stations. The study reveals a thin crust (∼35 km) beneath the Brahmaputra Valley (at JORH station) with a surface sedimentary layer of ∼4 km thick. The crustal thickness is observed to increase towards the north in the Himalaya (∼40 km at ZIRO and ITAN) and to the south (up to ∼46 km at KOHI). The crustal thickness near the Tripura fold-belt and Bengal Basin varies within ∼36–40 km. The study reveals the existence of a shallow mantle discontinuity (Hales discontinuity) at a variable depth range of ∼54–78 km characterized by a step increase (∼7.5–11 %) in shear wave velocity observed in the inverted models. The mineralogical phase transformation from spinel to garnet is considered as the origin of this discontinuity. The shallow depth of the discontinuity indicates an increase in upper mantle temperature which conforms to the high geothermal gradient reported in the region. The variation of depth of the discontinuity can be interpreted in terms of the addition of Cr<sup>+3</sup> that shifts the spinel-garnet stability field to higher depths whereas Fe<sup>+2</sup> shifts it to lower depths. Despite the high temperature in the upper mantle, the observed low Vp/Vs ratio (1.65–1.75) below the Hales discontinuity can be explained by the presence of a high fraction of orthopyroxene.</div></div>\",\"PeriodicalId\":50253,\"journal\":{\"name\":\"Journal of Asian Earth Sciences\",\"volume\":\"276 \",\"pages\":\"Article 106375\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367912024003705\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367912024003705","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

根据对 11 个地震台站记录的远震地震的接收函数(RF)分析,研究了印度东北部上雅鲁藏布江谷地、印缅山脉和孟加拉盆地下的地壳和浅上地幔结构。研究显示,雅鲁藏布江谷地(JORH 站)下的地壳较薄(∼35 千米),表层沉积层厚∼4 千米。地壳厚度在喜马拉雅山脉向北(ZIRO 和 ITAN 站为∼40 公里)和向南(KOHI 站为∼46 公里)增加。特里普拉褶皱带和孟加拉盆地附近的地壳厚度变化范围为 36-40 公里。研究显示,在 54-78 千米的不同深度范围内存在一个浅地幔不连续面(Hales 不连续面),其特征是在反演模型中观察到剪切波速度呈阶梯式上升(7.5%-11%)。从尖晶石到石榴石的矿物学相变被认为是这一不连续性的起源。不连续面的深度较浅,表明上地幔温度升高,这与该地区报告的高地热梯度相符。不连续面深度的变化可以解释为 Cr+3 的加入使尖晶石-石榴石稳定场向较高深度移动,而 Fe+2 则使其向较低深度移动。尽管上地幔温度较高,但在黑尔斯不连续面以下观测到的低 Vp/Vs 比值(1.65-1.75)可以用正长石比例较高来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A shallow mantle seismic discontinuity beneath northeast India: Evidence from receiver function analyses
The crust and shallow upper mantle structure beneath the Upper Brahmaputra Valley, Indo-Burma Ranges, and Bengal Basin of Northeast India have been investigated based on receiver function (RF) analysis of teleseismic earthquakes recorded by 11 seismological stations. The study reveals a thin crust (∼35 km) beneath the Brahmaputra Valley (at JORH station) with a surface sedimentary layer of ∼4 km thick. The crustal thickness is observed to increase towards the north in the Himalaya (∼40 km at ZIRO and ITAN) and to the south (up to ∼46 km at KOHI). The crustal thickness near the Tripura fold-belt and Bengal Basin varies within ∼36–40 km. The study reveals the existence of a shallow mantle discontinuity (Hales discontinuity) at a variable depth range of ∼54–78 km characterized by a step increase (∼7.5–11 %) in shear wave velocity observed in the inverted models. The mineralogical phase transformation from spinel to garnet is considered as the origin of this discontinuity. The shallow depth of the discontinuity indicates an increase in upper mantle temperature which conforms to the high geothermal gradient reported in the region. The variation of depth of the discontinuity can be interpreted in terms of the addition of Cr+3 that shifts the spinel-garnet stability field to higher depths whereas Fe+2 shifts it to lower depths. Despite the high temperature in the upper mantle, the observed low Vp/Vs ratio (1.65–1.75) below the Hales discontinuity can be explained by the presence of a high fraction of orthopyroxene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Asian Earth Sciences
Journal of Asian Earth Sciences 地学-地球科学综合
CiteScore
5.90
自引率
10.00%
发文量
324
审稿时长
71 days
期刊介绍: Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance. The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.
期刊最新文献
Editorial Board Late Pleistocene palynological records from the Qaidam Basin (North Tibet) and their implications for Qarhan Lake evolution Evidence from zircon and apatite thermochronology provides evidence for the tectonic-thermal evolution and denudational processes in Dulan, Eastern Kunlun Mountains, China New subsurface structural insights of Northeast Vietnam: Advanced implications from high-resolution magnetic data 3-D shallow crustal structure and offshore geothermal potential of the Aegean region of Türkiye from ambient noise tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1