CHA: 检测人与物体互动的条件超适配器方法

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-10-10 DOI:10.1016/j.patcog.2024.111075
Mengyang Sun , Wei Suo , Ji Wang , Peng Wang , Yanning Zhang
{"title":"CHA: 检测人与物体互动的条件超适配器方法","authors":"Mengyang Sun ,&nbsp;Wei Suo ,&nbsp;Ji Wang ,&nbsp;Peng Wang ,&nbsp;Yanning Zhang","doi":"10.1016/j.patcog.2024.111075","DOIUrl":null,"url":null,"abstract":"<div><div>Human–object interactions (HOI) detection aims at capturing human–object pairs in images and predicting their actions. It is an essential step for many visual reasoning tasks, such as VQA, image retrieval and surveillance event detection. The challenge of this task is to tackle the compositional learning problem, especially in a few-shot setting. A straightforward approach is designing a group of dedicated models for each specific pair. However, the maintenance of these independent models is unrealistic due to combinatorial explosion. To address the above problems, we propose a new Conditional Hyper-Adapter (CHA) method based on meta-learning. Different from previous works, our approach regards each <span><math><mo>&lt;</mo></math></span>verb, object<span><math><mo>&gt;</mo></math></span> as an independent sub-task. Meanwhile, we design two kinds of Hyper-Adapter structures to guide the model to learn “how to address the HOI detection”. By combining the different conditions and hypernetwork, the CHA can adaptively generate partial parameters and improve the representation and generalization ability of the model. Finally, our proposed method can be viewed as a plug-and-play module to boost existing HOI detection models on the widely used HOI benchmarks.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111075"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHA: Conditional Hyper-Adapter method for detecting human–object interaction\",\"authors\":\"Mengyang Sun ,&nbsp;Wei Suo ,&nbsp;Ji Wang ,&nbsp;Peng Wang ,&nbsp;Yanning Zhang\",\"doi\":\"10.1016/j.patcog.2024.111075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human–object interactions (HOI) detection aims at capturing human–object pairs in images and predicting their actions. It is an essential step for many visual reasoning tasks, such as VQA, image retrieval and surveillance event detection. The challenge of this task is to tackle the compositional learning problem, especially in a few-shot setting. A straightforward approach is designing a group of dedicated models for each specific pair. However, the maintenance of these independent models is unrealistic due to combinatorial explosion. To address the above problems, we propose a new Conditional Hyper-Adapter (CHA) method based on meta-learning. Different from previous works, our approach regards each <span><math><mo>&lt;</mo></math></span>verb, object<span><math><mo>&gt;</mo></math></span> as an independent sub-task. Meanwhile, we design two kinds of Hyper-Adapter structures to guide the model to learn “how to address the HOI detection”. By combining the different conditions and hypernetwork, the CHA can adaptively generate partial parameters and improve the representation and generalization ability of the model. Finally, our proposed method can be viewed as a plug-and-play module to boost existing HOI detection models on the widely used HOI benchmarks.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"159 \",\"pages\":\"Article 111075\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324008264\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008264","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

人-物互动(HOI)检测旨在捕捉图像中的人-物对并预测其动作。这是许多视觉推理任务(如 VQA、图像检索和监控事件检测)的重要步骤。这项任务的难点在于如何解决合成学习问题,尤其是在拍摄数量较少的情况下。一种简单直接的方法是为每对特定图像设计一组专用模型。然而,由于组合爆炸,维护这些独立模型是不现实的。为了解决上述问题,我们提出了一种基于元学习的全新条件超适配器(CHA)方法。与以往的方法不同,我们的方法将每个动词、对象视为一个独立的子任务。同时,我们设计了两种超适配器结构来引导模型学习 "如何解决 HOI 检测"。通过结合不同的条件和超网络,CHA 可以自适应地生成部分参数,提高模型的表征和泛化能力。最后,我们提出的方法可被视为一个即插即用模块,可在广泛使用的 HOI 基准上提升现有 HOI 检测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CHA: Conditional Hyper-Adapter method for detecting human–object interaction
Human–object interactions (HOI) detection aims at capturing human–object pairs in images and predicting their actions. It is an essential step for many visual reasoning tasks, such as VQA, image retrieval and surveillance event detection. The challenge of this task is to tackle the compositional learning problem, especially in a few-shot setting. A straightforward approach is designing a group of dedicated models for each specific pair. However, the maintenance of these independent models is unrealistic due to combinatorial explosion. To address the above problems, we propose a new Conditional Hyper-Adapter (CHA) method based on meta-learning. Different from previous works, our approach regards each <verb, object> as an independent sub-task. Meanwhile, we design two kinds of Hyper-Adapter structures to guide the model to learn “how to address the HOI detection”. By combining the different conditions and hypernetwork, the CHA can adaptively generate partial parameters and improve the representation and generalization ability of the model. Finally, our proposed method can be viewed as a plug-and-play module to boost existing HOI detection models on the widely used HOI benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Learning accurate and enriched features for stereo image super-resolution Semi-supervised multi-view feature selection with adaptive similarity fusion and learning DyConfidMatch: Dynamic thresholding and re-sampling for 3D semi-supervised learning CAST: An innovative framework for Cross-dimensional Attention Structure in Transformers Embedded feature selection for robust probability learning machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1