Collins Chimeleze , Norziana Jamil , Nazik Alturki , Zuhaira Muhammad Zain
{"title":"基于混合模糊模拟退火聚类的安卓应用程序轻量级恶意软件检测技术","authors":"Collins Chimeleze , Norziana Jamil , Nazik Alturki , Zuhaira Muhammad Zain","doi":"10.1016/j.eij.2024.100560","DOIUrl":null,"url":null,"abstract":"<div><div>The growing complexity of cyber threats has shifted the focus from merely identifying threats to detecting their origins, resulting in stronger defenses against malware. Traditional detection techniques are often inadequate against increasingly sophisticated malware, prompting this research article to propose a new clustering method—fuzzy C-mean simulated annealing (FCMSA)—to enhance malware detection through machine learning. The FCMSA clustering technique improves performance by minimizing vulnerabilities, reducing outliers, and optimizing large datasets. The proposed technique selects high-quality clusters from Android app permissions and, using lightGBM, classifies Android malware. Experimental results show that the proposed FCMSA-GBM technique achieves superior accuracy (99.21%) and precision (99.70%) compared to other prevalent cluster-based Android malware detection techniques, while also lowering error rates and execution time.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"28 ","pages":"Article 100560"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight malware detection technique based on hybrid fuzzy simulated annealing clustering in Android apps\",\"authors\":\"Collins Chimeleze , Norziana Jamil , Nazik Alturki , Zuhaira Muhammad Zain\",\"doi\":\"10.1016/j.eij.2024.100560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing complexity of cyber threats has shifted the focus from merely identifying threats to detecting their origins, resulting in stronger defenses against malware. Traditional detection techniques are often inadequate against increasingly sophisticated malware, prompting this research article to propose a new clustering method—fuzzy C-mean simulated annealing (FCMSA)—to enhance malware detection through machine learning. The FCMSA clustering technique improves performance by minimizing vulnerabilities, reducing outliers, and optimizing large datasets. The proposed technique selects high-quality clusters from Android app permissions and, using lightGBM, classifies Android malware. Experimental results show that the proposed FCMSA-GBM technique achieves superior accuracy (99.21%) and precision (99.70%) compared to other prevalent cluster-based Android malware detection techniques, while also lowering error rates and execution time.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":\"28 \",\"pages\":\"Article 100560\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866524001233\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866524001233","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Lightweight malware detection technique based on hybrid fuzzy simulated annealing clustering in Android apps
The growing complexity of cyber threats has shifted the focus from merely identifying threats to detecting their origins, resulting in stronger defenses against malware. Traditional detection techniques are often inadequate against increasingly sophisticated malware, prompting this research article to propose a new clustering method—fuzzy C-mean simulated annealing (FCMSA)—to enhance malware detection through machine learning. The FCMSA clustering technique improves performance by minimizing vulnerabilities, reducing outliers, and optimizing large datasets. The proposed technique selects high-quality clusters from Android app permissions and, using lightGBM, classifies Android malware. Experimental results show that the proposed FCMSA-GBM technique achieves superior accuracy (99.21%) and precision (99.70%) compared to other prevalent cluster-based Android malware detection techniques, while also lowering error rates and execution time.
期刊介绍:
The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.