基于混合模糊模拟退火聚类的安卓应用程序轻量级恶意软件检测技术

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Egyptian Informatics Journal Pub Date : 2024-10-19 DOI:10.1016/j.eij.2024.100560
Collins Chimeleze , Norziana Jamil , Nazik Alturki , Zuhaira Muhammad Zain
{"title":"基于混合模糊模拟退火聚类的安卓应用程序轻量级恶意软件检测技术","authors":"Collins Chimeleze ,&nbsp;Norziana Jamil ,&nbsp;Nazik Alturki ,&nbsp;Zuhaira Muhammad Zain","doi":"10.1016/j.eij.2024.100560","DOIUrl":null,"url":null,"abstract":"<div><div>The growing complexity of cyber threats has shifted the focus from merely identifying threats to detecting their origins, resulting in stronger defenses against malware. Traditional detection techniques are often inadequate against increasingly sophisticated malware, prompting this research article to propose a new clustering method—fuzzy C-mean simulated annealing (FCMSA)—to enhance malware detection through machine learning. The FCMSA clustering technique improves performance by minimizing vulnerabilities, reducing outliers, and optimizing large datasets. The proposed technique selects high-quality clusters from Android app permissions and, using lightGBM, classifies Android malware. Experimental results show that the proposed FCMSA-GBM technique achieves superior accuracy (99.21%) and precision (99.70%) compared to other prevalent cluster-based Android malware detection techniques, while also lowering error rates and execution time.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"28 ","pages":"Article 100560"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight malware detection technique based on hybrid fuzzy simulated annealing clustering in Android apps\",\"authors\":\"Collins Chimeleze ,&nbsp;Norziana Jamil ,&nbsp;Nazik Alturki ,&nbsp;Zuhaira Muhammad Zain\",\"doi\":\"10.1016/j.eij.2024.100560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing complexity of cyber threats has shifted the focus from merely identifying threats to detecting their origins, resulting in stronger defenses against malware. Traditional detection techniques are often inadequate against increasingly sophisticated malware, prompting this research article to propose a new clustering method—fuzzy C-mean simulated annealing (FCMSA)—to enhance malware detection through machine learning. The FCMSA clustering technique improves performance by minimizing vulnerabilities, reducing outliers, and optimizing large datasets. The proposed technique selects high-quality clusters from Android app permissions and, using lightGBM, classifies Android malware. Experimental results show that the proposed FCMSA-GBM technique achieves superior accuracy (99.21%) and precision (99.70%) compared to other prevalent cluster-based Android malware detection techniques, while also lowering error rates and execution time.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":\"28 \",\"pages\":\"Article 100560\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866524001233\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866524001233","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

网络威胁日益复杂,人们已将关注点从单纯识别威胁转移到检测威胁来源,从而加强对恶意软件的防御。传统的检测技术往往不足以应对日益复杂的恶意软件,因此本研究文章提出了一种新的聚类方法--模糊C均值模拟退火(FCMSA)--通过机器学习来增强恶意软件的检测能力。FCMSA 聚类技术通过最小化漏洞、减少异常值和优化大型数据集来提高性能。该技术从安卓应用程序权限中选择高质量聚类,并使用 lightGBM 对安卓恶意软件进行分类。实验结果表明,与其他流行的基于聚类的安卓恶意软件检测技术相比,所提出的 FCMSA-GBM 技术实现了更高的准确率(99.21%)和精确度(99.70%),同时还降低了错误率和执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Lightweight malware detection technique based on hybrid fuzzy simulated annealing clustering in Android apps
The growing complexity of cyber threats has shifted the focus from merely identifying threats to detecting their origins, resulting in stronger defenses against malware. Traditional detection techniques are often inadequate against increasingly sophisticated malware, prompting this research article to propose a new clustering method—fuzzy C-mean simulated annealing (FCMSA)—to enhance malware detection through machine learning. The FCMSA clustering technique improves performance by minimizing vulnerabilities, reducing outliers, and optimizing large datasets. The proposed technique selects high-quality clusters from Android app permissions and, using lightGBM, classifies Android malware. Experimental results show that the proposed FCMSA-GBM technique achieves superior accuracy (99.21%) and precision (99.70%) compared to other prevalent cluster-based Android malware detection techniques, while also lowering error rates and execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
期刊最新文献
Multistep prediction for egg prices: An efficient sequence-to-sequence network A multi-objective fuzzy model based on enhanced artificial fish Swarm for multiple RNA sequences alignment A road lane detection approach based on reformer model Advanced segmentation method for integrating multi-omics data for early cancer detection Innovation of teaching mechanism of music course integrating artificial intelligence technology: ITMMCAI-MCA-ACNN approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1