Xuting Lan , Fan Jia , Xu Zhuang , Xuekai Wei , Jun Luo , Mingliang Zhou , Sam Kwong
{"title":"用于全参考图像质量评估的分层降级感知网络","authors":"Xuting Lan , Fan Jia , Xu Zhuang , Xuekai Wei , Jun Luo , Mingliang Zhou , Sam Kwong","doi":"10.1016/j.ins.2024.121557","DOIUrl":null,"url":null,"abstract":"<div><div>Full-Reference Image Quality Assessment (FR-IQA) algorithms excel in evaluating perceptual distortions by comparing reference and distorted images. However, as the severity and quantity of distortions in datasets increase, existing FR-IQA methods struggle to capture complex nonlinear perceptual features. This limitation results in reduced adaptability and inaccurate assessments for images with more severe or multiple distortions. Recognizing the importance of understanding image degradation mechanisms, we propose a novel hierarchical degradation-aware network (HDaN) method. First, by exploring the degradation mechanisms from the reference image to the distorted image, our degradation network matches distortions that align more closely with the human visual system (HVS). Next, we design a convertor to project the matched features into multiple spaces, creating multidimensional feature representations that more comprehensively capture the complexity of image distortions rather than being confined to a single feature space. Then, we calculate a similarity matrix between the distorted and mapped features, selecting the most similar (top-k) features for merging. Finally, a regression network maps the merged features to quality scores, providing the final quality prediction. The experimental results demonstrate that our proposed HDaN method outperforms traditional deep learning-based FR-IQA methods. Specifically, the HDaN shows higher PLCC and SROCC metrics on benchmark datasets, significantly improving over existing methods. Moreover, the method exhibits better adaptability to images with varying degrees and types of distortions, thereby greatly enhancing the overall performance of IQA.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"690 ","pages":"Article 121557"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical degradation-aware network for full-reference image quality assessment\",\"authors\":\"Xuting Lan , Fan Jia , Xu Zhuang , Xuekai Wei , Jun Luo , Mingliang Zhou , Sam Kwong\",\"doi\":\"10.1016/j.ins.2024.121557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Full-Reference Image Quality Assessment (FR-IQA) algorithms excel in evaluating perceptual distortions by comparing reference and distorted images. However, as the severity and quantity of distortions in datasets increase, existing FR-IQA methods struggle to capture complex nonlinear perceptual features. This limitation results in reduced adaptability and inaccurate assessments for images with more severe or multiple distortions. Recognizing the importance of understanding image degradation mechanisms, we propose a novel hierarchical degradation-aware network (HDaN) method. First, by exploring the degradation mechanisms from the reference image to the distorted image, our degradation network matches distortions that align more closely with the human visual system (HVS). Next, we design a convertor to project the matched features into multiple spaces, creating multidimensional feature representations that more comprehensively capture the complexity of image distortions rather than being confined to a single feature space. Then, we calculate a similarity matrix between the distorted and mapped features, selecting the most similar (top-k) features for merging. Finally, a regression network maps the merged features to quality scores, providing the final quality prediction. The experimental results demonstrate that our proposed HDaN method outperforms traditional deep learning-based FR-IQA methods. Specifically, the HDaN shows higher PLCC and SROCC metrics on benchmark datasets, significantly improving over existing methods. Moreover, the method exhibits better adaptability to images with varying degrees and types of distortions, thereby greatly enhancing the overall performance of IQA.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"690 \",\"pages\":\"Article 121557\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524014713\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524014713","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Hierarchical degradation-aware network for full-reference image quality assessment
Full-Reference Image Quality Assessment (FR-IQA) algorithms excel in evaluating perceptual distortions by comparing reference and distorted images. However, as the severity and quantity of distortions in datasets increase, existing FR-IQA methods struggle to capture complex nonlinear perceptual features. This limitation results in reduced adaptability and inaccurate assessments for images with more severe or multiple distortions. Recognizing the importance of understanding image degradation mechanisms, we propose a novel hierarchical degradation-aware network (HDaN) method. First, by exploring the degradation mechanisms from the reference image to the distorted image, our degradation network matches distortions that align more closely with the human visual system (HVS). Next, we design a convertor to project the matched features into multiple spaces, creating multidimensional feature representations that more comprehensively capture the complexity of image distortions rather than being confined to a single feature space. Then, we calculate a similarity matrix between the distorted and mapped features, selecting the most similar (top-k) features for merging. Finally, a regression network maps the merged features to quality scores, providing the final quality prediction. The experimental results demonstrate that our proposed HDaN method outperforms traditional deep learning-based FR-IQA methods. Specifically, the HDaN shows higher PLCC and SROCC metrics on benchmark datasets, significantly improving over existing methods. Moreover, the method exhibits better adaptability to images with varying degrees and types of distortions, thereby greatly enhancing the overall performance of IQA.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.