基于光传感器的移动设备隐蔽信道

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2024-10-23 DOI:10.1016/j.ins.2024.121581
Mila Dalla Preda , Claudia Greco , Michele Ianni , Francesco Lupia , Andrea Pugliese
{"title":"基于光传感器的移动设备隐蔽信道","authors":"Mila Dalla Preda ,&nbsp;Claudia Greco ,&nbsp;Michele Ianni ,&nbsp;Francesco Lupia ,&nbsp;Andrea Pugliese","doi":"10.1016/j.ins.2024.121581","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread adoption of light sensors in mobile devices has enabled functionalities that range from automatic brightness control to environmental monitoring. However, these sensors also present significant security and privacy risks within the Android ecosystem due to unrestricted access permissions. This paper explores how light sensor data can be used for covert communication through a novel, light-based out-of-band channel. We develop two approaches–<span>Baseline</span> and <span>ResetBased</span>–that use luminance values to encode and decode data. These methods tackle challenges that arise from data variability and the unpredictability of sensor event timings. To enhance data transmission accuracy, our methods employ a novel strategy for selecting luminance reference sequences and leverage mean-squared-error-based distance for decoding. Experimental results validate the effectiveness of our approaches and their potential for real-world applications.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"690 ","pages":"Article 121581"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light sensor based covert channels on mobile devices\",\"authors\":\"Mila Dalla Preda ,&nbsp;Claudia Greco ,&nbsp;Michele Ianni ,&nbsp;Francesco Lupia ,&nbsp;Andrea Pugliese\",\"doi\":\"10.1016/j.ins.2024.121581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The widespread adoption of light sensors in mobile devices has enabled functionalities that range from automatic brightness control to environmental monitoring. However, these sensors also present significant security and privacy risks within the Android ecosystem due to unrestricted access permissions. This paper explores how light sensor data can be used for covert communication through a novel, light-based out-of-band channel. We develop two approaches–<span>Baseline</span> and <span>ResetBased</span>–that use luminance values to encode and decode data. These methods tackle challenges that arise from data variability and the unpredictability of sensor event timings. To enhance data transmission accuracy, our methods employ a novel strategy for selecting luminance reference sequences and leverage mean-squared-error-based distance for decoding. Experimental results validate the effectiveness of our approaches and their potential for real-world applications.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"690 \",\"pages\":\"Article 121581\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524014956\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524014956","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

光传感器在移动设备中的广泛应用实现了从自动亮度控制到环境监测的各种功能。然而,由于不受限制的访问权限,这些传感器在安卓生态系统中也存在重大的安全和隐私风险。本文探讨了如何通过新颖的基于光的带外信道将光传感器数据用于隐蔽通信。我们开发了两种使用亮度值对数据进行编码和解码的方法--基线法和基于重置法。这些方法可以应对数据变化和传感器事件时间不可预测性带来的挑战。为了提高数据传输的准确性,我们的方法采用了一种新颖的策略来选择亮度参考序列,并利用基于均方误差的距离来进行解码。实验结果验证了我们方法的有效性及其在实际应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Light sensor based covert channels on mobile devices
The widespread adoption of light sensors in mobile devices has enabled functionalities that range from automatic brightness control to environmental monitoring. However, these sensors also present significant security and privacy risks within the Android ecosystem due to unrestricted access permissions. This paper explores how light sensor data can be used for covert communication through a novel, light-based out-of-band channel. We develop two approaches–Baseline and ResetBased–that use luminance values to encode and decode data. These methods tackle challenges that arise from data variability and the unpredictability of sensor event timings. To enhance data transmission accuracy, our methods employ a novel strategy for selecting luminance reference sequences and leverage mean-squared-error-based distance for decoding. Experimental results validate the effectiveness of our approaches and their potential for real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Editorial Board Community structure testing by counting frequent common neighbor sets Finite-time secure synchronization for stochastic complex networks with delayed coupling under deception attacks: A two-step switching control scheme Adaptive granular data compression and interval granulation for efficient classification Introducing fairness in network visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1