面向无线传感器网络快速安全模型的信任感知和改进密度峰聚类算法

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pervasive and Mobile Computing Pub Date : 2024-10-10 DOI:10.1016/j.pmcj.2024.101993
Youjia Han, Huibin Wang, Yueheng Li, Lili Zhang
{"title":"面向无线传感器网络快速安全模型的信任感知和改进密度峰聚类算法","authors":"Youjia Han,&nbsp;Huibin Wang,&nbsp;Yueheng Li,&nbsp;Lili Zhang","doi":"10.1016/j.pmcj.2024.101993","DOIUrl":null,"url":null,"abstract":"<div><div>Many trust-based models for wireless sensor networks do not account for trust attacks, which are destructive phenomena that undermine the security and reliability of these models. Therefore, a trust-based fast security model fused with an improved density peaks clustering algorithm (TFSM-DPC) is proposed to quickly identify trust attacks in this paper. First, when calculating direct trust values, TFSM-DPC designs the adaptive penalty factors based on the state of received and sent packets and behaviors, and introduces the volatilization factors to reduce the effect of historical trust values. Second, TFSM-DPC improved density peaks clustering (DPC) algorithm to evaluate the trustworthiness of each recommendation value, thus filtering malicious recommendations before calculating the indirect trust values. Moreover, to filter two types of recommendations, the improved DPC algorithm incorporates artificial benchmark data along with trust values recommended by neighbors as input data. Finally, based on the relationship between direct trust and indirect trust, a secure formula for calculate the comprehensive trust is designed. Therefore, the proposed TFSM-DPC can improve the accuracy of trust evaluation and speed up the identification of malicious nodes. Simulation results show that TFSM-DPC can effectively identify on-off, bad-mouth and collusion attacks, and improve the speed of excluding malicious nodes from the network, compared to other trust-based algorithms.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trust-aware and improved density peaks clustering algorithm for fast and secure models in wireless sensor networks\",\"authors\":\"Youjia Han,&nbsp;Huibin Wang,&nbsp;Yueheng Li,&nbsp;Lili Zhang\",\"doi\":\"10.1016/j.pmcj.2024.101993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many trust-based models for wireless sensor networks do not account for trust attacks, which are destructive phenomena that undermine the security and reliability of these models. Therefore, a trust-based fast security model fused with an improved density peaks clustering algorithm (TFSM-DPC) is proposed to quickly identify trust attacks in this paper. First, when calculating direct trust values, TFSM-DPC designs the adaptive penalty factors based on the state of received and sent packets and behaviors, and introduces the volatilization factors to reduce the effect of historical trust values. Second, TFSM-DPC improved density peaks clustering (DPC) algorithm to evaluate the trustworthiness of each recommendation value, thus filtering malicious recommendations before calculating the indirect trust values. Moreover, to filter two types of recommendations, the improved DPC algorithm incorporates artificial benchmark data along with trust values recommended by neighbors as input data. Finally, based on the relationship between direct trust and indirect trust, a secure formula for calculate the comprehensive trust is designed. Therefore, the proposed TFSM-DPC can improve the accuracy of trust evaluation and speed up the identification of malicious nodes. Simulation results show that TFSM-DPC can effectively identify on-off, bad-mouth and collusion attacks, and improve the speed of excluding malicious nodes from the network, compared to other trust-based algorithms.</div></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119224001184\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224001184","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

许多基于信任的无线传感器网络模型都没有考虑到信任攻击,而信任攻击是一种破坏性现象,会损害这些模型的安全性和可靠性。因此,本文提出了一种与改进密度峰聚类算法(TFSM-DPC)相融合的基于信任的快速安全模型,以快速识别信任攻击。首先,在计算直接信任值时,TFSM-DPC 根据接收和发送数据包的状态和行为设计自适应惩罚因子,并引入波动因子以降低历史信任值的影响。其次,TFSM-DPC 改进了密度峰聚类(DPC)算法,以评估每个推荐值的可信度,从而在计算间接信任值之前过滤恶意推荐。此外,为了过滤两类推荐,改进后的 DPC 算法将人工基准数据和邻居推荐的信任值作为输入数据。最后,根据直接信任和间接信任之间的关系,设计了计算综合信任的安全公式。因此,所提出的 TFSM-DPC 可以提高信任评估的准确性,加快识别恶意节点的速度。仿真结果表明,与其他基于信任的算法相比,TFSM-DPC 能有效识别 on-off、bad-mouth 和 collusion 攻击,并提高从网络中排除恶意节点的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trust-aware and improved density peaks clustering algorithm for fast and secure models in wireless sensor networks
Many trust-based models for wireless sensor networks do not account for trust attacks, which are destructive phenomena that undermine the security and reliability of these models. Therefore, a trust-based fast security model fused with an improved density peaks clustering algorithm (TFSM-DPC) is proposed to quickly identify trust attacks in this paper. First, when calculating direct trust values, TFSM-DPC designs the adaptive penalty factors based on the state of received and sent packets and behaviors, and introduces the volatilization factors to reduce the effect of historical trust values. Second, TFSM-DPC improved density peaks clustering (DPC) algorithm to evaluate the trustworthiness of each recommendation value, thus filtering malicious recommendations before calculating the indirect trust values. Moreover, to filter two types of recommendations, the improved DPC algorithm incorporates artificial benchmark data along with trust values recommended by neighbors as input data. Finally, based on the relationship between direct trust and indirect trust, a secure formula for calculate the comprehensive trust is designed. Therefore, the proposed TFSM-DPC can improve the accuracy of trust evaluation and speed up the identification of malicious nodes. Simulation results show that TFSM-DPC can effectively identify on-off, bad-mouth and collusion attacks, and improve the speed of excluding malicious nodes from the network, compared to other trust-based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pervasive and Mobile Computing
Pervasive and Mobile Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
7.70
自引率
2.30%
发文量
80
审稿时长
68 days
期刊介绍: As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies. The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.
期刊最新文献
Minimum data sampling requirements for accurate detection of terrain-induced gait alterations change with mobile sensor position An energy-aware secure routing scheme in internet of things networks via two-way trust evaluation Trust-aware and improved density peaks clustering algorithm for fast and secure models in wireless sensor networks A controllability method on the social Internet of Things (SIoT) network INLEC: An involutive and low energy lightweight block cipher for internet of things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1