中国北方草原土壤沿干旱梯度横断面的硫生物地球化学动态变化

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE Geoderma Pub Date : 2024-10-20 DOI:10.1016/j.geoderma.2024.117073
Yi-Wen Cao , Xiao-Bo Wang , Chao Wang , Edith Bai , Nanping Wu
{"title":"中国北方草原土壤沿干旱梯度横断面的硫生物地球化学动态变化","authors":"Yi-Wen Cao ,&nbsp;Xiao-Bo Wang ,&nbsp;Chao Wang ,&nbsp;Edith Bai ,&nbsp;Nanping Wu","doi":"10.1016/j.geoderma.2024.117073","DOIUrl":null,"url":null,"abstract":"<div><div>As an essential nutrient element for biological growth and metabolism, sulfur is closely interlinked with the carbon and nitrogen cycles, and it is one of the limiting elements for grassland productivity. Here we investigated the spatial distribution of sulfur contents and <sup>34</sup>S stable isotope along the North China Transect (NCT), with the aim to explore the shaping role of the aridity index (AI) gradient on sulfur cycling dynamic in arid and semi-arid grasslands. In the area with AI &lt; 0.12, soil sulfur contents and sulfur isotopic compositions (δ<sup>34</sup>S) showed no correlation with AI, indicating that abiotic processes predominantly govern the sulfur cycle in this area. In the area where 0.12 ≤ AI &lt; 0.32, both sulfur contents and δ<sup>34</sup>S values increased with rising AI, with microbial-mediated reduction being the primary sulfur cycling process. In the area with 0.32 ≤ AI &lt; 0.60, soil sulfur contents continued to increase with higher AI, but δ<sup>34</sup>S significantly decreased as AI increased, suggesting plant uptake as the dominant sulfur cycling process in this area. This study demonstrated the significant impact of AI on sulfur dynamics, providing insights into the different drivers of sulfur cycling along the aridity gradient, and offering guidance for developing targeted strategies under global climate change.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfur biogeochemical dynamics of grassland soils in northern China transect along an aridity gradient\",\"authors\":\"Yi-Wen Cao ,&nbsp;Xiao-Bo Wang ,&nbsp;Chao Wang ,&nbsp;Edith Bai ,&nbsp;Nanping Wu\",\"doi\":\"10.1016/j.geoderma.2024.117073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As an essential nutrient element for biological growth and metabolism, sulfur is closely interlinked with the carbon and nitrogen cycles, and it is one of the limiting elements for grassland productivity. Here we investigated the spatial distribution of sulfur contents and <sup>34</sup>S stable isotope along the North China Transect (NCT), with the aim to explore the shaping role of the aridity index (AI) gradient on sulfur cycling dynamic in arid and semi-arid grasslands. In the area with AI &lt; 0.12, soil sulfur contents and sulfur isotopic compositions (δ<sup>34</sup>S) showed no correlation with AI, indicating that abiotic processes predominantly govern the sulfur cycle in this area. In the area where 0.12 ≤ AI &lt; 0.32, both sulfur contents and δ<sup>34</sup>S values increased with rising AI, with microbial-mediated reduction being the primary sulfur cycling process. In the area with 0.32 ≤ AI &lt; 0.60, soil sulfur contents continued to increase with higher AI, but δ<sup>34</sup>S significantly decreased as AI increased, suggesting plant uptake as the dominant sulfur cycling process in this area. This study demonstrated the significant impact of AI on sulfur dynamics, providing insights into the different drivers of sulfur cycling along the aridity gradient, and offering guidance for developing targeted strategies under global climate change.</div></div>\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016706124003021\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706124003021","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

硫作为生物生长和代谢所必需的营养元素,与碳、氮循环密切相关,是草原生产力的限制性元素之一。本文研究了华北断裂带硫含量和34S稳定同位素的空间分布,旨在探讨干旱和半干旱草原干旱指数(AI)梯度对硫循环动态的塑造作用。在干旱指数为0.12的地区,土壤硫含量和硫同位素组成(δ34S)与干旱指数无相关性,表明该地区的硫循环主要受非生物过程的影响。在 0.12 ≤ AI < 0.32 的区域,硫含量和 δ34S 值都随着 AI 的上升而增加,微生物介导的还原是主要的硫循环过程。在 0.32 ≤ AI < 0.60 的地区,土壤中的硫含量随着 AI 的升高而继续增加,但随着 AI 的升高,δ34S 显著下降,这表明植物吸收是该地区最主要的硫循环过程。这项研究证明了人工合成指数对硫动力学的重大影响,为深入了解干旱梯度硫循环的不同驱动因素提供了见解,并为在全球气候变化下制定有针对性的策略提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sulfur biogeochemical dynamics of grassland soils in northern China transect along an aridity gradient
As an essential nutrient element for biological growth and metabolism, sulfur is closely interlinked with the carbon and nitrogen cycles, and it is one of the limiting elements for grassland productivity. Here we investigated the spatial distribution of sulfur contents and 34S stable isotope along the North China Transect (NCT), with the aim to explore the shaping role of the aridity index (AI) gradient on sulfur cycling dynamic in arid and semi-arid grasslands. In the area with AI < 0.12, soil sulfur contents and sulfur isotopic compositions (δ34S) showed no correlation with AI, indicating that abiotic processes predominantly govern the sulfur cycle in this area. In the area where 0.12 ≤ AI < 0.32, both sulfur contents and δ34S values increased with rising AI, with microbial-mediated reduction being the primary sulfur cycling process. In the area with 0.32 ≤ AI < 0.60, soil sulfur contents continued to increase with higher AI, but δ34S significantly decreased as AI increased, suggesting plant uptake as the dominant sulfur cycling process in this area. This study demonstrated the significant impact of AI on sulfur dynamics, providing insights into the different drivers of sulfur cycling along the aridity gradient, and offering guidance for developing targeted strategies under global climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
期刊最新文献
Monitoring soil cracking using OFDR-based distributed temperature sensing framework Depth impacts on the aggregate-mediated mechanisms of root carbon stabilization in soil: Trade-off between MAOM and POM pathways Can inert pool models improve predictions of biochar long-term persistence in soils? Impact of a synthetic zeolite mixed with soils of different pedological characteristics on soil physical quality indices Driving factors of variation in fertilizer nitrogen recovery efficiency in maize cropping systems across China and its microbial mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1