Zhongxing Chen , Zheng Wang , Xi Wang , Zhou Shi , Songchao Chen
{"title":"将土壤空间邻域信息纳入数字土壤制图","authors":"Zhongxing Chen , Zheng Wang , Xi Wang , Zhou Shi , Songchao Chen","doi":"10.1016/j.geoderma.2024.117072","DOIUrl":null,"url":null,"abstract":"<div><div>Digital soil mapping (DSM) is transforming how we understand and manage soil resources, offering high-resolution spatial–temporal soil information essential for addressing environmental challenges. The integration of environmental covariates has advanced soil mapping accuracy, while the potential of neighboring soil sample data has been largely overlooked. This study introduces soil spatial neighbor information (SSNI) as a novel approach to enhance the predictive power of spatial models. Utilizing two open-access datasets from LUCAS Soil and Meuse, our findings showed that incorporating SSNI improved the accuracy of random forest models in mapping soil organic carbon density (reduced %RMSE of 3.1%), cadmium (reduced %RMSE of 3.6%), copper (reduced %RMSE of 5.9%), lead (reduced %RMSE of 11.5%), and zinc (reduced %RMSE of 7.4%). Compared to the inclusion of buffer distance or oblique geographic coordinates for modelling, SSNI also performed better for both LUCAS Soil and Meuse datasets. This study underscores the value of SSNI in improving digital soil maps by capturing the neighboring information. Embracing SSNI could lead to more informed decision-making in soil management and its potential applicability across other disciplines also remains open for exploration in future research endeavors.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Including soil spatial neighbor information for digital soil mapping\",\"authors\":\"Zhongxing Chen , Zheng Wang , Xi Wang , Zhou Shi , Songchao Chen\",\"doi\":\"10.1016/j.geoderma.2024.117072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Digital soil mapping (DSM) is transforming how we understand and manage soil resources, offering high-resolution spatial–temporal soil information essential for addressing environmental challenges. The integration of environmental covariates has advanced soil mapping accuracy, while the potential of neighboring soil sample data has been largely overlooked. This study introduces soil spatial neighbor information (SSNI) as a novel approach to enhance the predictive power of spatial models. Utilizing two open-access datasets from LUCAS Soil and Meuse, our findings showed that incorporating SSNI improved the accuracy of random forest models in mapping soil organic carbon density (reduced %RMSE of 3.1%), cadmium (reduced %RMSE of 3.6%), copper (reduced %RMSE of 5.9%), lead (reduced %RMSE of 11.5%), and zinc (reduced %RMSE of 7.4%). Compared to the inclusion of buffer distance or oblique geographic coordinates for modelling, SSNI also performed better for both LUCAS Soil and Meuse datasets. This study underscores the value of SSNI in improving digital soil maps by capturing the neighboring information. Embracing SSNI could lead to more informed decision-making in soil management and its potential applicability across other disciplines also remains open for exploration in future research endeavors.</div></div>\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001670612400301X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001670612400301X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Including soil spatial neighbor information for digital soil mapping
Digital soil mapping (DSM) is transforming how we understand and manage soil resources, offering high-resolution spatial–temporal soil information essential for addressing environmental challenges. The integration of environmental covariates has advanced soil mapping accuracy, while the potential of neighboring soil sample data has been largely overlooked. This study introduces soil spatial neighbor information (SSNI) as a novel approach to enhance the predictive power of spatial models. Utilizing two open-access datasets from LUCAS Soil and Meuse, our findings showed that incorporating SSNI improved the accuracy of random forest models in mapping soil organic carbon density (reduced %RMSE of 3.1%), cadmium (reduced %RMSE of 3.6%), copper (reduced %RMSE of 5.9%), lead (reduced %RMSE of 11.5%), and zinc (reduced %RMSE of 7.4%). Compared to the inclusion of buffer distance or oblique geographic coordinates for modelling, SSNI also performed better for both LUCAS Soil and Meuse datasets. This study underscores the value of SSNI in improving digital soil maps by capturing the neighboring information. Embracing SSNI could lead to more informed decision-making in soil management and its potential applicability across other disciplines also remains open for exploration in future research endeavors.
期刊介绍:
Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.