戚风蛋糕烘焙过程中的传热、传质和变形

IF 5.3 2区 农林科学 Q1 ENGINEERING, CHEMICAL Journal of Food Engineering Pub Date : 2024-10-21 DOI:10.1016/j.jfoodeng.2024.112361
Wei Yang, Linshuang Long, Luo Zhang, Kai Xu, Zizhen Huang, Hong Ye
{"title":"戚风蛋糕烘焙过程中的传热、传质和变形","authors":"Wei Yang,&nbsp;Linshuang Long,&nbsp;Luo Zhang,&nbsp;Kai Xu,&nbsp;Zizhen Huang,&nbsp;Hong Ye","doi":"10.1016/j.jfoodeng.2024.112361","DOIUrl":null,"url":null,"abstract":"<div><div>The structural transformation from a foam liquid to a porous solid during cake baking involves pore development and solidification, resulting in complex coupled heat transfer, mass transfer, and deformation processes. Studying the mechanisms can provide important references for understanding the physical processes of numerous foods containing gas pores. We constructed a multiphase flow-deformation model for chiffon cake baking, and validated its accuracy by comparing the experimental results of temperature and height. Based on the model, the heat transfer, mass transfer, and deformation characteristics were investigated. In the pore-closed region, the evaporation-diffusion-condensation process of water vapor enhances heat transfer, and its contribution to heat transfer has an equivalent thermal conductivity of up to 0.64 W/(m·K), which increases the heating rate. In the pore-opening region, the water vapor evaporates from the high-temperature, high-water activity region and is transported towards the lower-temperature region and external environment. This process enhances heat transfer and induces an evaporative cooling effect, resulting in a uniform temperature distribution that remains below 100 °C across the majority of the region. Cake expansion occurs in the low-viscosity, pore-closed region, and the water vapor generated at high temperatures serves as the primary driving force source, contributing up to 84.6%.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"388 ","pages":"Article 112361"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat and mass transfer and deformation during chiffon cake baking\",\"authors\":\"Wei Yang,&nbsp;Linshuang Long,&nbsp;Luo Zhang,&nbsp;Kai Xu,&nbsp;Zizhen Huang,&nbsp;Hong Ye\",\"doi\":\"10.1016/j.jfoodeng.2024.112361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The structural transformation from a foam liquid to a porous solid during cake baking involves pore development and solidification, resulting in complex coupled heat transfer, mass transfer, and deformation processes. Studying the mechanisms can provide important references for understanding the physical processes of numerous foods containing gas pores. We constructed a multiphase flow-deformation model for chiffon cake baking, and validated its accuracy by comparing the experimental results of temperature and height. Based on the model, the heat transfer, mass transfer, and deformation characteristics were investigated. In the pore-closed region, the evaporation-diffusion-condensation process of water vapor enhances heat transfer, and its contribution to heat transfer has an equivalent thermal conductivity of up to 0.64 W/(m·K), which increases the heating rate. In the pore-opening region, the water vapor evaporates from the high-temperature, high-water activity region and is transported towards the lower-temperature region and external environment. This process enhances heat transfer and induces an evaporative cooling effect, resulting in a uniform temperature distribution that remains below 100 °C across the majority of the region. Cake expansion occurs in the low-viscosity, pore-closed region, and the water vapor generated at high temperatures serves as the primary driving force source, contributing up to 84.6%.</div></div>\",\"PeriodicalId\":359,\"journal\":{\"name\":\"Journal of Food Engineering\",\"volume\":\"388 \",\"pages\":\"Article 112361\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0260877424004278\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424004278","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在蛋糕烘焙过程中,从泡沫液体到多孔固体的结构转变涉及孔隙发育和凝固,导致复杂的传热、传质和变形耦合过程。研究其机理可为了解众多含有气孔的食品的物理过程提供重要参考。我们构建了戚风蛋糕烘焙的多相流-变形模型,并通过比较温度和高度的实验结果验证了该模型的准确性。基于该模型,研究了传热、传质和变形特性。在孔隙封闭区域,水蒸气的蒸发-扩散-凝结过程增强了传热,其传热贡献的等效热导率高达 0.64 W/(m-K),从而提高了加热速率。在孔隙打开区域,水蒸气从高温、高水活度区域蒸发,并被输送到低温区域和外部环境。这一过程加强了热传导并产生了蒸发冷却效应,从而使大部分区域的温度分布均匀,保持在 100 °C 以下。结块膨胀发生在低粘度、孔隙封闭的区域,高温下产生的水蒸气是主要的驱动力来源,占比高达 84.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heat and mass transfer and deformation during chiffon cake baking
The structural transformation from a foam liquid to a porous solid during cake baking involves pore development and solidification, resulting in complex coupled heat transfer, mass transfer, and deformation processes. Studying the mechanisms can provide important references for understanding the physical processes of numerous foods containing gas pores. We constructed a multiphase flow-deformation model for chiffon cake baking, and validated its accuracy by comparing the experimental results of temperature and height. Based on the model, the heat transfer, mass transfer, and deformation characteristics were investigated. In the pore-closed region, the evaporation-diffusion-condensation process of water vapor enhances heat transfer, and its contribution to heat transfer has an equivalent thermal conductivity of up to 0.64 W/(m·K), which increases the heating rate. In the pore-opening region, the water vapor evaporates from the high-temperature, high-water activity region and is transported towards the lower-temperature region and external environment. This process enhances heat transfer and induces an evaporative cooling effect, resulting in a uniform temperature distribution that remains below 100 °C across the majority of the region. Cake expansion occurs in the low-viscosity, pore-closed region, and the water vapor generated at high temperatures serves as the primary driving force source, contributing up to 84.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Engineering
Journal of Food Engineering 工程技术-工程:化工
CiteScore
11.80
自引率
5.50%
发文量
275
审稿时长
24 days
期刊介绍: The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including: Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes. Accounts of food engineering achievements are of particular value.
期刊最新文献
Modeling, simulation, and optimization of multi-stage equilibrium extraction of phenolic compounds from grape pomace Microencapsulation of anthocyanin-rich extract of grumixama fruits (Eugenia brasiliensis) using non-conventional wall materials and in vitro gastrointestinal digestion Editorial Board Drop breakup can occur inside the gap of a high-pressure homogenizer – New evidence from experimental breakup visualizations Enzymatic bimetallic Cu-Ni micromotor sensor for xanthine detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1