{"title":"提高煤矿井下瓦斯抽放和通风效率:确定增压风机优先次序的混合专家决策方法","authors":"Abiodun Ismail Lawal , Moshood Onifade , Sangki Kwon , Manoj Khandelwal","doi":"10.1016/j.tust.2024.106153","DOIUrl":null,"url":null,"abstract":"<div><div>Expanding mining operations in goaf zones heightens gas production potential, posing challenges in maintaining adequate ventilation within development panels, consequently impacting coal production. Various strategies have been explored to enhance mine ventilation and gas drainage effectiveness. However, deficiencies persist in the proposed ventilation system for the Okaba underground coal mine, prompting this study’s necessity. Addressing these concerns, the study evaluates the feasibility of employing booster fans to mitigate the identified drawbacks. Prioritizing booster fans for airflow distribution in underground mines is a complex decision-making process, requiring an advanced expert system approach. To address this, the study proposes an intuitionistic-based fuzzy TOPSIS (IFT) method for booster fan prioritization in the Okaba mine. Results indicate that booster fan 4 (BF4) ranks highest, followed by booster fan 3 (BF3), consistent with fuzzy TOPSIS findings. Sensitivity analysis supports the predicted importance order, affirming the efficacy of the hybrid expert decision method in selecting a booster fan capable of enhancing the overall efficiency of gas drainage and ventilation systems in underground mines. This study introduces a Hybrid Expert Decision Approach that integrates IFT and traditional fuzzy TOPSIS methodologies. This hybrid approach is particularly novel because it combines the strengths of both methods to prioritize booster fans in underground coal mines.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"155 ","pages":"Article 106153"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing gas drainage and ventilation efficiency in underground coal mines: A hybrid expert decision approach for booster fan prioritization\",\"authors\":\"Abiodun Ismail Lawal , Moshood Onifade , Sangki Kwon , Manoj Khandelwal\",\"doi\":\"10.1016/j.tust.2024.106153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Expanding mining operations in goaf zones heightens gas production potential, posing challenges in maintaining adequate ventilation within development panels, consequently impacting coal production. Various strategies have been explored to enhance mine ventilation and gas drainage effectiveness. However, deficiencies persist in the proposed ventilation system for the Okaba underground coal mine, prompting this study’s necessity. Addressing these concerns, the study evaluates the feasibility of employing booster fans to mitigate the identified drawbacks. Prioritizing booster fans for airflow distribution in underground mines is a complex decision-making process, requiring an advanced expert system approach. To address this, the study proposes an intuitionistic-based fuzzy TOPSIS (IFT) method for booster fan prioritization in the Okaba mine. Results indicate that booster fan 4 (BF4) ranks highest, followed by booster fan 3 (BF3), consistent with fuzzy TOPSIS findings. Sensitivity analysis supports the predicted importance order, affirming the efficacy of the hybrid expert decision method in selecting a booster fan capable of enhancing the overall efficiency of gas drainage and ventilation systems in underground mines. This study introduces a Hybrid Expert Decision Approach that integrates IFT and traditional fuzzy TOPSIS methodologies. This hybrid approach is particularly novel because it combines the strengths of both methods to prioritize booster fans in underground coal mines.</div></div>\",\"PeriodicalId\":49414,\"journal\":{\"name\":\"Tunnelling and Underground Space Technology\",\"volume\":\"155 \",\"pages\":\"Article 106153\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunnelling and Underground Space Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0886779824005716\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779824005716","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Enhancing gas drainage and ventilation efficiency in underground coal mines: A hybrid expert decision approach for booster fan prioritization
Expanding mining operations in goaf zones heightens gas production potential, posing challenges in maintaining adequate ventilation within development panels, consequently impacting coal production. Various strategies have been explored to enhance mine ventilation and gas drainage effectiveness. However, deficiencies persist in the proposed ventilation system for the Okaba underground coal mine, prompting this study’s necessity. Addressing these concerns, the study evaluates the feasibility of employing booster fans to mitigate the identified drawbacks. Prioritizing booster fans for airflow distribution in underground mines is a complex decision-making process, requiring an advanced expert system approach. To address this, the study proposes an intuitionistic-based fuzzy TOPSIS (IFT) method for booster fan prioritization in the Okaba mine. Results indicate that booster fan 4 (BF4) ranks highest, followed by booster fan 3 (BF3), consistent with fuzzy TOPSIS findings. Sensitivity analysis supports the predicted importance order, affirming the efficacy of the hybrid expert decision method in selecting a booster fan capable of enhancing the overall efficiency of gas drainage and ventilation systems in underground mines. This study introduces a Hybrid Expert Decision Approach that integrates IFT and traditional fuzzy TOPSIS methodologies. This hybrid approach is particularly novel because it combines the strengths of both methods to prioritize booster fans in underground coal mines.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.