分析泥石流冲刷的渐进侵蚀特征和形成机理:数值模拟及其应用

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Tunnelling and Underground Space Technology Pub Date : 2024-10-28 DOI:10.1016/j.tust.2024.106150
{"title":"分析泥石流冲刷的渐进侵蚀特征和形成机理:数值模拟及其应用","authors":"","doi":"10.1016/j.tust.2024.106150","DOIUrl":null,"url":null,"abstract":"<div><div>Unlike water inrush occurring in karst and faults, debris flow inrush involves a greater number of debris such as mud and sand, and exhibit a more complex evolution process of disaster, characterized by significant progressive erosion phenomenon. At present, the progressive erosion characteristics from fine particles to coarse particles before the burst of debris flow inrush is still unclear, and there is a lack of model to predict the volume of debris flow inrush. In this study, the debris flow inrush accidents of Anshi tunnel crossing the contact zone are introduced. Then, using a coupled computational fluid dynamics and discrete element method (CFD-DEM), the debris flow inrush is simulated in multi-scales: from sample-scale to engineering-scale. The erosion characteristics and friction angle degradation during progressive erosion in sample-scale, and the formation mechanism of debris flow inrush in engineering-scale are studied. Finally, based on the results of multi-scale simulations, a model to predict the volume of debris flow inrush considering progressive erosion is established. The reliability of the model is verified by comparison with volume of debris flow inrush of Anshi tunnel. The results of this study contribute to understanding the formation mechanism of debris flow inrush and predicting its volume.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the characteristics of progressive erosion and the formation mechanism of debris flow inrush: Numerical simulation and its application\",\"authors\":\"\",\"doi\":\"10.1016/j.tust.2024.106150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unlike water inrush occurring in karst and faults, debris flow inrush involves a greater number of debris such as mud and sand, and exhibit a more complex evolution process of disaster, characterized by significant progressive erosion phenomenon. At present, the progressive erosion characteristics from fine particles to coarse particles before the burst of debris flow inrush is still unclear, and there is a lack of model to predict the volume of debris flow inrush. In this study, the debris flow inrush accidents of Anshi tunnel crossing the contact zone are introduced. Then, using a coupled computational fluid dynamics and discrete element method (CFD-DEM), the debris flow inrush is simulated in multi-scales: from sample-scale to engineering-scale. The erosion characteristics and friction angle degradation during progressive erosion in sample-scale, and the formation mechanism of debris flow inrush in engineering-scale are studied. Finally, based on the results of multi-scale simulations, a model to predict the volume of debris flow inrush considering progressive erosion is established. The reliability of the model is verified by comparison with volume of debris flow inrush of Anshi tunnel. The results of this study contribute to understanding the formation mechanism of debris flow inrush and predicting its volume.</div></div>\",\"PeriodicalId\":49414,\"journal\":{\"name\":\"Tunnelling and Underground Space Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunnelling and Underground Space Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0886779824005686\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779824005686","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

与发生在岩溶和断层中的水流冲刷不同,泥石流冲刷涉及的泥沙等碎屑数量较多,灾害演化过程较为复杂,具有明显的渐进侵蚀现象。目前,泥石流迸发前从细颗粒到粗颗粒的渐进侵蚀特征尚不明确,也缺乏泥石流迸发量的预测模型。本研究介绍了安石隧道穿越接触带的泥石流冲刷事故。然后,利用计算流体力学和离散元耦合方法(CFD-DEM),对泥石流涌入进行了从样本尺度到工程尺度的多尺度模拟。研究了样品尺度下渐进侵蚀过程中的侵蚀特征和摩擦角衰减,以及工程尺度下泥石流冲刷的形成机理。最后,在多尺度模拟结果的基础上,建立了考虑渐进侵蚀的泥石流冲刷量预测模型。通过与安石隧道泥石流涌入量的对比,验证了该模型的可靠性。研究结果有助于理解泥石流涌入的形成机理并预测其涌入量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the characteristics of progressive erosion and the formation mechanism of debris flow inrush: Numerical simulation and its application
Unlike water inrush occurring in karst and faults, debris flow inrush involves a greater number of debris such as mud and sand, and exhibit a more complex evolution process of disaster, characterized by significant progressive erosion phenomenon. At present, the progressive erosion characteristics from fine particles to coarse particles before the burst of debris flow inrush is still unclear, and there is a lack of model to predict the volume of debris flow inrush. In this study, the debris flow inrush accidents of Anshi tunnel crossing the contact zone are introduced. Then, using a coupled computational fluid dynamics and discrete element method (CFD-DEM), the debris flow inrush is simulated in multi-scales: from sample-scale to engineering-scale. The erosion characteristics and friction angle degradation during progressive erosion in sample-scale, and the formation mechanism of debris flow inrush in engineering-scale are studied. Finally, based on the results of multi-scale simulations, a model to predict the volume of debris flow inrush considering progressive erosion is established. The reliability of the model is verified by comparison with volume of debris flow inrush of Anshi tunnel. The results of this study contribute to understanding the formation mechanism of debris flow inrush and predicting its volume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
期刊最新文献
Experimental study on sealing effect of cement–sodium silicate slurry in rock fracture with flowing seawater Theory and field tests of innovative cut blasting method for rock roadway excavation Asymmetric deformation and failure behavior of roadway subjected to different principal stress based on biaxial tests Scalar- and vector-valued seismic fragility assessment of segmental shield tunnel lining in liquefiable soil deposits Experimental and numerical study on the waterproof performances of the sealing gaskets under coupled compression-shear stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1