Akash Bhimrao Shirsath , Manas Mokashi , Reihaneh Pashminehazar , Ahmet Çelik , Patrick Lott , Steffen Tischer , Jan-Dierk Grunwaldt , Olaf Deutschmann
{"title":"调查 CH4 热解反应器中烟尘的形成:数值、实验和特性研究","authors":"Akash Bhimrao Shirsath , Manas Mokashi , Reihaneh Pashminehazar , Ahmet Çelik , Patrick Lott , Steffen Tischer , Jan-Dierk Grunwaldt , Olaf Deutschmann","doi":"10.1016/j.carbon.2024.119689","DOIUrl":null,"url":null,"abstract":"<div><div>Methane pyrolysis is a promising method for eco-friendly hydrogen production, but soot formation and carbon interaction pose challenges for scaling up. Therefore, understanding the dynamics of soot formation and carbon deposition is crucial. This study delves into the intricacies of soot formation in methane pyrolysis under industrially relevant conditions, namely operations at atmospheric pressure, employing a H<sub>2</sub>:CH<sub>4</sub> ratio of 2 and exploring a range of hot zone temperatures (1473 K, 1573 K, 1673 K, and 1773 K) with a 5 s residence time. Utilizing a detailed gas-phase kinetic model with direct carbon deposition reactions, the research adopts the method of moments coupled with a one-dimensional plug flow reactor model to simulate soot formation. The model is validated by characterizing soot particles that were produced in a pyrolysis reactor by means of transmission electron microscopy, Dynamic light scattering (DLS), and Raman spectroscopy. Results show that lower temperatures lead to nucleation-dominated growth, whereas higher temperatures significantly restrain particle growth due to carbon deposition. DLS data indicate a complex balance between particle growth and deposition processes. These findings provide insights into operational parameters that can enhance reactor performance and sustainability in hydrogen production processes by mitigating soot and carbon deposition.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"231 ","pages":"Article 119689"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the formation of soot in CH4 pyrolysis reactor: A numerical, experimental, and characterization study\",\"authors\":\"Akash Bhimrao Shirsath , Manas Mokashi , Reihaneh Pashminehazar , Ahmet Çelik , Patrick Lott , Steffen Tischer , Jan-Dierk Grunwaldt , Olaf Deutschmann\",\"doi\":\"10.1016/j.carbon.2024.119689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Methane pyrolysis is a promising method for eco-friendly hydrogen production, but soot formation and carbon interaction pose challenges for scaling up. Therefore, understanding the dynamics of soot formation and carbon deposition is crucial. This study delves into the intricacies of soot formation in methane pyrolysis under industrially relevant conditions, namely operations at atmospheric pressure, employing a H<sub>2</sub>:CH<sub>4</sub> ratio of 2 and exploring a range of hot zone temperatures (1473 K, 1573 K, 1673 K, and 1773 K) with a 5 s residence time. Utilizing a detailed gas-phase kinetic model with direct carbon deposition reactions, the research adopts the method of moments coupled with a one-dimensional plug flow reactor model to simulate soot formation. The model is validated by characterizing soot particles that were produced in a pyrolysis reactor by means of transmission electron microscopy, Dynamic light scattering (DLS), and Raman spectroscopy. Results show that lower temperatures lead to nucleation-dominated growth, whereas higher temperatures significantly restrain particle growth due to carbon deposition. DLS data indicate a complex balance between particle growth and deposition processes. These findings provide insights into operational parameters that can enhance reactor performance and sustainability in hydrogen production processes by mitigating soot and carbon deposition.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"231 \",\"pages\":\"Article 119689\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324009084\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324009084","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Investigating the formation of soot in CH4 pyrolysis reactor: A numerical, experimental, and characterization study
Methane pyrolysis is a promising method for eco-friendly hydrogen production, but soot formation and carbon interaction pose challenges for scaling up. Therefore, understanding the dynamics of soot formation and carbon deposition is crucial. This study delves into the intricacies of soot formation in methane pyrolysis under industrially relevant conditions, namely operations at atmospheric pressure, employing a H2:CH4 ratio of 2 and exploring a range of hot zone temperatures (1473 K, 1573 K, 1673 K, and 1773 K) with a 5 s residence time. Utilizing a detailed gas-phase kinetic model with direct carbon deposition reactions, the research adopts the method of moments coupled with a one-dimensional plug flow reactor model to simulate soot formation. The model is validated by characterizing soot particles that were produced in a pyrolysis reactor by means of transmission electron microscopy, Dynamic light scattering (DLS), and Raman spectroscopy. Results show that lower temperatures lead to nucleation-dominated growth, whereas higher temperatures significantly restrain particle growth due to carbon deposition. DLS data indicate a complex balance between particle growth and deposition processes. These findings provide insights into operational parameters that can enhance reactor performance and sustainability in hydrogen production processes by mitigating soot and carbon deposition.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.