Chengze Liu , Longlong Dong , Guodong Sun , Wei Zhang , Junjie Xu , Mingjia Li , Yongqing Fu , Yusheng Zhang
{"title":"具有高活性石墨烯诱导原位 TiC 和相干纳米相的 Ti-6Al-4V 复合材料的超高强度 - 延展性","authors":"Chengze Liu , Longlong Dong , Guodong Sun , Wei Zhang , Junjie Xu , Mingjia Li , Yongqing Fu , Yusheng Zhang","doi":"10.1016/j.carbon.2024.119760","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving ultra-high strength and ductility of titanium alloys possesses great potential for structural applications in the aerospace and military, yet there is a great challenge for breaking the trade-off barrier of these two properties. In this study, large elongation of ∼10 % and ultra-high tensile strengths of 1510 MPa were obtained in a titanium-based composite. We designed this superior composite based on nanoscale coherent αʹʹ precipitation within near-equiaxed β-Ti as well as micro-scale TiC network architectures along grain boundaries. These <em>in-situ</em> formed triangular αʹʹ coherent precipitates and TiC mainly contributed to the strengthening, while the extremely large elongation resulted from coherent β/αʹʹ interfaces and strain-induced coherent αʹʹ nanotwins. We demonstrated that this composite was easily fabricated using a simple powder metallurgy followed by a hot rolling process. This work can contribute to the design of duplex titanium-based composites as well as other structural materials with exceptional mechanical properties for broad applications.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"231 ","pages":"Article 119760"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh strength – ductility in Ti–6Al–4V composites with high-activity graphene-induced in-situ TiC and coherent nanophases\",\"authors\":\"Chengze Liu , Longlong Dong , Guodong Sun , Wei Zhang , Junjie Xu , Mingjia Li , Yongqing Fu , Yusheng Zhang\",\"doi\":\"10.1016/j.carbon.2024.119760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Achieving ultra-high strength and ductility of titanium alloys possesses great potential for structural applications in the aerospace and military, yet there is a great challenge for breaking the trade-off barrier of these two properties. In this study, large elongation of ∼10 % and ultra-high tensile strengths of 1510 MPa were obtained in a titanium-based composite. We designed this superior composite based on nanoscale coherent αʹʹ precipitation within near-equiaxed β-Ti as well as micro-scale TiC network architectures along grain boundaries. These <em>in-situ</em> formed triangular αʹʹ coherent precipitates and TiC mainly contributed to the strengthening, while the extremely large elongation resulted from coherent β/αʹʹ interfaces and strain-induced coherent αʹʹ nanotwins. We demonstrated that this composite was easily fabricated using a simple powder metallurgy followed by a hot rolling process. This work can contribute to the design of duplex titanium-based composites as well as other structural materials with exceptional mechanical properties for broad applications.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"231 \",\"pages\":\"Article 119760\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324009795\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324009795","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ultrahigh strength – ductility in Ti–6Al–4V composites with high-activity graphene-induced in-situ TiC and coherent nanophases
Achieving ultra-high strength and ductility of titanium alloys possesses great potential for structural applications in the aerospace and military, yet there is a great challenge for breaking the trade-off barrier of these two properties. In this study, large elongation of ∼10 % and ultra-high tensile strengths of 1510 MPa were obtained in a titanium-based composite. We designed this superior composite based on nanoscale coherent αʹʹ precipitation within near-equiaxed β-Ti as well as micro-scale TiC network architectures along grain boundaries. These in-situ formed triangular αʹʹ coherent precipitates and TiC mainly contributed to the strengthening, while the extremely large elongation resulted from coherent β/αʹʹ interfaces and strain-induced coherent αʹʹ nanotwins. We demonstrated that this composite was easily fabricated using a simple powder metallurgy followed by a hot rolling process. This work can contribute to the design of duplex titanium-based composites as well as other structural materials with exceptional mechanical properties for broad applications.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.