{"title":"整合不同保真度模型,实现工艺优化:使用离子液体进行基于平衡和速率的萃取蒸馏案例","authors":"Ashfaq Iftakher , Ty Leonard , M.M. Faruque Hasan","doi":"10.1016/j.compchemeng.2024.108890","DOIUrl":null,"url":null,"abstract":"<div><div>We integrate equilibrium and rate-based models to formulate a hybrid optimization scheme for designing an ionic liquid-based extractive distillation process for mixed-refrigerant separation. The equilibrium model assumes vapor–liquid equilibrium at each stage but challenges arise with low-volatility, high-viscosity solvents, which drive the system away from equilibrium. The rate-based approach considers mass and heat transfer rates, giving more accurate representation. We compare the two models for separating R-410A, an azeotropic mixture of R-32 and R-125, using [EMIM][SCN] ionic liquid as entrainer. Analyzing over 4300 simulations with various dimensionality reduction and topological analysis techniques, we find that predictions from the two models exhibit similar trends, but the overestimation in equilibrium-based purities sometimes leads to infeasible process designs. The proposed optimization algorithm thus combines the strengths of the two models to locate feasible and optimal designs.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108890"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating different fidelity models for process optimization: A case of equilibrium and rate-based extractive distillation using ionic liquids\",\"authors\":\"Ashfaq Iftakher , Ty Leonard , M.M. Faruque Hasan\",\"doi\":\"10.1016/j.compchemeng.2024.108890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We integrate equilibrium and rate-based models to formulate a hybrid optimization scheme for designing an ionic liquid-based extractive distillation process for mixed-refrigerant separation. The equilibrium model assumes vapor–liquid equilibrium at each stage but challenges arise with low-volatility, high-viscosity solvents, which drive the system away from equilibrium. The rate-based approach considers mass and heat transfer rates, giving more accurate representation. We compare the two models for separating R-410A, an azeotropic mixture of R-32 and R-125, using [EMIM][SCN] ionic liquid as entrainer. Analyzing over 4300 simulations with various dimensionality reduction and topological analysis techniques, we find that predictions from the two models exhibit similar trends, but the overestimation in equilibrium-based purities sometimes leads to infeasible process designs. The proposed optimization algorithm thus combines the strengths of the two models to locate feasible and optimal designs.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108890\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003089\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003089","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Integrating different fidelity models for process optimization: A case of equilibrium and rate-based extractive distillation using ionic liquids
We integrate equilibrium and rate-based models to formulate a hybrid optimization scheme for designing an ionic liquid-based extractive distillation process for mixed-refrigerant separation. The equilibrium model assumes vapor–liquid equilibrium at each stage but challenges arise with low-volatility, high-viscosity solvents, which drive the system away from equilibrium. The rate-based approach considers mass and heat transfer rates, giving more accurate representation. We compare the two models for separating R-410A, an azeotropic mixture of R-32 and R-125, using [EMIM][SCN] ionic liquid as entrainer. Analyzing over 4300 simulations with various dimensionality reduction and topological analysis techniques, we find that predictions from the two models exhibit similar trends, but the overestimation in equilibrium-based purities sometimes leads to infeasible process designs. The proposed optimization algorithm thus combines the strengths of the two models to locate feasible and optimal designs.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.