大规模原油调度综合生产规划的知识辅助混合优化策略

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-10-22 DOI:10.1016/j.compchemeng.2024.108904
Renchu He , Yunhao Xie , Shiwei Zhang , Feng Xu , Jian Long
{"title":"大规模原油调度综合生产规划的知识辅助混合优化策略","authors":"Renchu He ,&nbsp;Yunhao Xie ,&nbsp;Shiwei Zhang ,&nbsp;Feng Xu ,&nbsp;Jian Long","doi":"10.1016/j.compchemeng.2024.108904","DOIUrl":null,"url":null,"abstract":"<div><div>As modern refinery crude oil scheduling scales up, traditional manual operations and independent optimization methods struggle with complexity and dynamics. This study proposes an empirically assisted integrated planning and scheduling optimization model.The integrated model is solved using a hybrid optimization algorithm combining mathematical programming and particle swarm optimization (MP/PSO). Long-term planning aims to minimize operational and transportation costs while maximizing refinery profits; short-term scheduling, based on initial long-term plans, aims to minimize unit switchovers. In the short-term scheduling phase, heuristic rules based on empirical operational knowledge generate a high-performing initial population to accelerate convergence. This strategy is crucial for enhancing refinery emergency response capabilities, ensuring stable operations, and improving economic benefits. Experimental results show that within a reasonable time frame, MP/PSO performs better than PSO and manual scheduling in large-scale crude oil scheduling scenarios.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108904"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge-assisted hybrid optimization strategy of large-scale crude oil scheduling integrated production planning\",\"authors\":\"Renchu He ,&nbsp;Yunhao Xie ,&nbsp;Shiwei Zhang ,&nbsp;Feng Xu ,&nbsp;Jian Long\",\"doi\":\"10.1016/j.compchemeng.2024.108904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As modern refinery crude oil scheduling scales up, traditional manual operations and independent optimization methods struggle with complexity and dynamics. This study proposes an empirically assisted integrated planning and scheduling optimization model.The integrated model is solved using a hybrid optimization algorithm combining mathematical programming and particle swarm optimization (MP/PSO). Long-term planning aims to minimize operational and transportation costs while maximizing refinery profits; short-term scheduling, based on initial long-term plans, aims to minimize unit switchovers. In the short-term scheduling phase, heuristic rules based on empirical operational knowledge generate a high-performing initial population to accelerate convergence. This strategy is crucial for enhancing refinery emergency response capabilities, ensuring stable operations, and improving economic benefits. Experimental results show that within a reasonable time frame, MP/PSO performs better than PSO and manual scheduling in large-scale crude oil scheduling scenarios.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108904\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003223\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003223","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着现代炼油厂原油调度规模的扩大,传统的人工操作和独立优化方法在复杂性和动态性面前举步维艰。本研究提出了一种经验辅助的综合计划和调度优化模型。该综合模型采用数学编程和粒子群优化(MP/PSO)相结合的混合优化算法求解。长期规划的目标是最大限度地降低运营和运输成本,同时最大限度地提高炼油厂的利润;短期调度基于最初的长期规划,旨在最大限度地减少装置切换。在短期调度阶段,基于经验运营知识的启发式规则会产生一个高性能的初始群体,以加速收敛。这一策略对于提高炼油厂应急响应能力、确保稳定运行和提高经济效益至关重要。实验结果表明,在合理的时间范围内,MP/PSO 在大规模原油调度场景中的表现优于 PSO 和人工调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge-assisted hybrid optimization strategy of large-scale crude oil scheduling integrated production planning
As modern refinery crude oil scheduling scales up, traditional manual operations and independent optimization methods struggle with complexity and dynamics. This study proposes an empirically assisted integrated planning and scheduling optimization model.The integrated model is solved using a hybrid optimization algorithm combining mathematical programming and particle swarm optimization (MP/PSO). Long-term planning aims to minimize operational and transportation costs while maximizing refinery profits; short-term scheduling, based on initial long-term plans, aims to minimize unit switchovers. In the short-term scheduling phase, heuristic rules based on empirical operational knowledge generate a high-performing initial population to accelerate convergence. This strategy is crucial for enhancing refinery emergency response capabilities, ensuring stable operations, and improving economic benefits. Experimental results show that within a reasonable time frame, MP/PSO performs better than PSO and manual scheduling in large-scale crude oil scheduling scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1